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The problem of recovering a structured signal x ∈ Cp from
a set of dimensionality-reduced linear measurements b = Ax
arises in a variety of applications, such as medical imaging,
spectroscopy, Fourier optics, and computerized tomography. Due
to computational and storage complexity or physical constraints
imposed by the problem, the measurement matrix A ∈ Cn×p is
often of the form A = PΩΨ for some orthonormal basis matrix
Ψ ∈ Cp×p and subsampling operator PΩ : Cp → Cn that selects
the rows indexed by Ω. This raises the fundamental question
of how best to choose the index set Ω in order to optimize
the recovery performance. Previous approaches to addressing
this question rely on non-uniform random subsampling using
application-specific knowledge of the structure of x. In this paper,
we instead take a principled learning-based approach in which
a fixed index set is chosen based on a set of training signals
x1, . . . ,xm. We formulate combinatorial optimization problems
seeking to maximize the energy captured in these signals in
an average-case or worst-case sense, and we show that these
can be efficiently solved either exactly or approximately via the
identification of modularity and submodularity structures. We
provide both deterministic and statistical theoretical guarantees
showing how the resulting measurement matrices perform on
signals differing from the training signals, and we provide
numerical examples showing our approach to be effective on
a variety of data sets.

Index Terms—Compressive sensing, learning-based measure-
ment design, data-driven sensing design, non-uniform subsam-
pling, structured sparsity, scientific and medical imaging, sub-
modular optimization

I. INTRODUCTION

In the past decade, there has been a tremendous amount
of research on the problem of recovering a structured signal
x ∈ Cp (e.g., a signal with few non-zero coefficients) from a
set of dimensionality-reduced measurements of the form

b = Ax + w, (1)

where A ∈ Cn×p is a known measurement matrix, and w ∈
Cn represents unknown additive noise.

This problem is often referred to as compressive sensing
(CS), and is ubiquitous in signal processing, having an exten-
sive range of applications including medical resonance imag-
ing (MRI), spectroscopy, radar, Fourier optics, and computer-
ized tomography [1]. The key challenges in CS revolve around
the identification of structure in the signal (e.g., sparsity),
computationally efficient algorithms, and measurement matrix
designs. In this paper, we focus primarily on the latter.

In the classical CS setting where x is sparse, the best
theoretical recovery guarantees are obtained by random matri-
ces with independent and identically distributed (iid) entries,

along with sparsity-promoting convex optimization methods
[2]. However, such random matrices impose a significant
burden in the data processing pipeline in terms of both storage
and computation as the problem dimension p increases.

To overcome these limitations, significant attention has been
paid to subsampled structured matrices of the form [2]

A = PΩΨ, (2)

where Ψ ∈ Cp×p is an orthonormal basis, and PΩ : Cp → Cn,
where [PΩx]l = xΩl

, l = 1, . . . , n, is a subsampling operator
that selects the rows indexed by the set Ω, with |Ω| = n.
Popular choices for Ψ include Fourier and Hadamard matrices,
both of which permit efficient storage and computation.

Measurements of the form (2) are also of direct interest
in applications, such as MRI and Fourier optics, where one
cannot choose the basis in which measurements are taken, but
one does have the freedom in choosing a subsampling pattern.
Constraining the measurement matrix in this manner raises the
following fundamental question: How do we best choose the
index set Ω? The answer depends on the structure known to
be inherent in x, as well as the recovery algorithm used.

For general sparse vectors, uniform random subsampling
provides a variety of recovery guarantees under suitable as-
sumptions on the incoherence of Ψ with the sparsity basis of
the signal to be recovered [2]. However, it has been observed
that this approach can be significantly outperformed in appli-
cations via non-uniform random subsampling techniques, in
which one takes more samples in the parts of the signal that
tend to contain more energy, thus exploiting structured sparsity
in the signal as opposed to sparsity alone [3]. Explicit distri-
butions on Ω are proposed in [3], [4], containing parameters
that require tuning for the application at hand.

From a practical perspective, the randomization of Ω is typ-
ically not desirable, and perhaps not even possible. Moreover,
there is strong evidence that in real-world applications there
is a “best” choice of Ω that one should aim for. For instance,
while the compression standard [5] does not require it, the
subsampling for JPEG in the discrete cosine transform (DCT)
domain is typically chosen independently of the image being
compressed, in order to simplify the encoder. The indices for
MRI systems, which are based on Fourier measurements, are
often randomly chosen based on matching image statistics and
performing manual tuning, and are then fixed for later scans
[3], [4], [6], [7]. Despite its importance, principled approaches
to the “best” index selection problem appear to be lacking.

To bridge this gap, our paper takes a learning-based ap-
proach to subsampling via training signals and combinatorial
optimization problems. The high-level idea is simple: We
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select the indices that preserve as much energy as possible
in a set of training signals, either in a worst-case or average-
case sense, and we show that this is also equivalent to
minimizing the `2-error achieved by a simple linear decoder.
By identifying combinatorial optimization structures such as
submodularity, we show that we can find exact or near-exact
solutions to these optimization problems in polynomial time.
We then provide both deterministic and statistical theoretical
guarantees characterizing how well the selected set of indices
perform when applied to new signals differing from the
training set. Finally, we demonstrate the effectiveness of our
approach on a variety of data sets, showing matching or
improved performance compared to [3], [4], [6] in several
imaging applications.

Both our theory and our recovery results are based on the
use of highly efficient linear encoder and decoder pairs, and
we provide some examples that challenge the conventional
wisdom in CS that non-linear decoding methods, such as basis
pursuit, are necessary for reliable recovery [8]. Indeed, we
find that although such methods are needed when considering
arbitrary sparse or compressible signals, we may avoid them
in certain settings where the signals and the sampling mech-
anisms exhibit more specific structures. Nevertheless, non-
linear extensions of our work would also be of considerable
interest; see Section V for further discussion.

Our main theoretical contribution is our statistical gener-
alization bound, which states that when the training and test
signals are independently drawn from any common distribu-
tion, the average `2-norm error of the above-mentioned linear
decoder for the test signal can be made arbitrarily close to
the best possible, including randomized strategies, when the
number of training signals exceeds a value depending on the
complexity of the set constraints, e.g., O

(
n log p

n

)
training

signals suffice when there are no constraints.

A. Problem Statement

For clarity of exposition, we focus on the noiseless case
throughout the paper, and consider the measurement model

b = PΩΨx (3)

for some orthonormal basis matrix Ψ ∈ Cp×p, and some sub-
sampling matrix PΩ whose rows are canonical basis vectors.

Given a set of m training signals x1, . . . ,xm, we seek to
select an index set Ω permitting the recovery of further signals
that are in some sense similar to the training signals; see
Section III for some formal notions of similarity. We assume
without loss of generality that ‖xj‖2 = 1 for all j. While our
focus is on the selection of Ω, it is clear that the recovery
algorithm also plays a role towards achieving our goal.

Linear Decoding: The main procedure that we consider
simply expands b to a p-dimensional vector by placing zeros
in the entries corresponding to Ωc, and then applies the adjoint
Ψ∗ = Ψ−1:

x̂ = Ψ∗PT
Ωb. (4)

Note that this is a linear decoder, and can be implemented
highly efficiently even in large-scale systems for suitably
structured matrices Ψ (e.g., Fourier or Hadamard). In fact, it

is easily shown to be equivalent to the least-squares decoder,
i.e., the pseudo-inverse of PΩΨ is Ψ∗PT

Ω for unitary Ψ.
Basis Pursuit Decoding: If x is known to be approximately

sparse in some known basis, i.e., x = Φ∗z for some ap-
proximately sparse vector z and basis matrix Φ, then stable
and robust recovery is possible using standard CS algorithms.
A particularly popular choice is basis pursuit (BP), which
estimates

ẑ = arg min
z̃ : b=PΩΨΦ∗z̃

‖z̃‖1 (5)

and then sets x̂ = Φ∗ẑ. We can also replace the basis pursuit
recovery with other convex programs that leverage additional
“structured” sparsity of the coefficients, e.g., see [9].

We will use both decoders (4) and (5) in our numerical
results in Section IV, and in fact see that they behave similarly
in all of the examples therein, despite BP having a significantly
higher computational complexity.

B. Related Work

Variable-density Subsampling: To the best of our knowl-
edge, all previous works on variable-density subsampling have
considered randomized choices of Ω and sought the corre-
sponding distributions, rather than considering fixed choices.
A common approach is to design such distributions using
empirically-observed phenomena in images [3], [4] or adopt-
ing specific signal models such as generalized Gaussian [11].
In each of these works, the proposed designs involve parame-
ters that need to be learned or tuned, and we are not aware of
any efficient principled approaches for doing so. An alternative
approach is taken in [12] based on minimizing coherence (see
also [13] for a related work with unstructured matrices), but
the optimization is only based on the measurement and sparsity
bases, as opposed to training data.

Learning-based Measurement Designs: Several previous
works have proposed methods for designing unstructured mea-
surement matrices based on training data, with a particularly
common approach being to seek the best restricted isometry
property (RIP) constant [2] with respect to the training data.
In [14], this problem is cast as an affine rank minimization
problem, which is then relaxed to a semidefinite program.
A different approach is taken in [15], where the affine rank
minimization problem is reformulated and approximated using
game-theoretic tools. An alternating minimization approach is
adopted in [16] in the context of metric learning. A drawback
of all of these works is that since the measurement matrices are
unstructured, they suffer from similar storage and computation
limitations to those of random matrices with iid entries.

C. Contributions

The main contributions of this paper are as follows:
• We present a class of optimization problems for selecting

the subsampling indices based on training data, seeking to
choose those that capture as much energy as possible with
respect to the average case or worst case, or equivalently,
that minimize the `2 error achieved by a simple linear
decoder (see Section II-A). For each of these, we identify
inherent modularity and submodularity structures, thus
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permitting exact or approximate solutions to be obtained
efficiently using existing algorithms.

• For the average-case criterion, we show that a simple sort-
ing procedure achieves the exact solution. Moreover, we
show that several additional constraints on the subsam-
pling pattern can be incorporated while still permitting an
efficient solution, including matroid constraints [17] and
wavelet-tree based constraints [18].

• We provide theoretical results stating how the selected
indices perform when applied to a test signal not present
in the training set. For both the average-case and worst-
case criteria, this is done from a deterministic perspective,
assuming the new signal to be sufficiently close to the
training data in a sense dictated by Ω. For the average-
case criterion, we also provide bounds from a statistical
perspective, assuming the data to be independently drawn
from an unknown probability distribution, and drawing
connections with empirical risk minimization.

• We demonstrate the effectiveness of our approach on
a variety of data sets, in particular showing matching
or improved performance compared to [3], [4], [11] in
certain imaging scenarios.

D. Organization of the Paper

In Section II, we formally introduce our optimization prob-
lems, our techniques for solving them, and the resulting opti-
mality guarantees. Our theoretical results are presented in Sec-
tion III, namely, the deterministic and statistical generalization
bounds. In Section IV, we demonstrate the effectiveness of our
approach on a variety of data sets, and provide comparisons
to previous approaches. Conclusions are drawn in Section V.

II. LEARNING-BASED SUBSAMPLING STRATEGIES

In this section, we motivate our learning-based approach to
subsampling, formulate the corresponding optimization prob-
lems in terms of average-case and worst-case criteria, and
propose computationally efficient algorithms for solving them
exactly or approximately.

A. Motivation

The idea behind our subsampling strategy is simple: Given
the training signals x1, . . . ,xm, we seek a subsampling
scheme that preserves as much of their energy as possible.
Perhaps the most intuitively simple optimization problem
demonstrating this idea is the following:

Ω̂ = arg max
Ω : |Ω|=n

min
j=1,...,m

‖PΩΨxj‖22. (6)

Beyond the natural interpretation of capturing energy, this can
also be viewed as optimizing the worst-case performance of
the linear decoder proposed in (4) with respect to the error in
the `2-norm. Indeed, substituting (3) into (4), we obtain

‖x− x̂‖22 = ‖x−Ψ∗PT
ΩPΩΨx‖22 (7)

= ‖Ψx−PT
ΩPΩΨx‖22 (8)

= ‖PT
ΩcPΩcΨx‖22 (9)

= ‖PΩcΨx‖22 (10)

where (8) follows since Ψ is an orthonormal basis matrix and
thus ΨΨ∗ = I, (9) follows since PT

ΩPΩ + PT
ΩcPΩc = I, and

(10) follows since a multiplication by PT
Ωc simply produces

additional rows that are equal to zero. By decomposing the
energy according to the entries on Ω and Ωc, we have

‖PΩΨx‖22 + ‖PΩcΨx‖22 = 1. (11)

whenever ‖x‖2 = 1, and substitution into (10) yields

‖x− x̂‖22 = 1− ‖PΩΨx‖22. (12)

Thus, maximizing the objective in (6) amounts to minimizing
the `2-norm error for the decoder in (4).

Recalling that Ψ is an orthonormal basis matrix, we have
‖PΩΨxj‖2 ≤ ‖xj‖2. Thus, defining X := [x1, . . . ,xm] and
V := ΨX, we can equivalently write (6) as

Ω̂ = arg min
Ω : |Ω|=n

‖1− diag(VTPT
ΩPΩV)‖∞, (13)

where 1 is the vector of m ones, and diag(·) forms a vector
by taking the diagonal entries of a matrix. In this form, the
optimization problem can also be interpreted as finding the
subsampling pattern providing the best restricted isometry
property (RIP) constant [2] with respect to the training data,
analogously to the optimization problems of [15], [16] for
unstructured (rather than subsampled) matrices.

B. Optimization Criteria and Constraints

Generalizing (6), we study the following class of problems:

Ω̂ = arg max
Ω∈A

F (Ω), (14)

where A ⊆ {Ω : |Ω| = n} is a cardinality constrained subset
of {1, . . . , p}, and the set function F (·) is given by

F (Ω) := f
(
‖PΩΨx1‖22, . . . , ‖PΩΨxm‖22

)
(15)

for some function f . For example, (6) is recovered by setting
f(α1, . . . , αm) = minj=1,...,m αj and A = {Ω : |Ω| = n}.
While this choice of A is perhaps the most obvious, one may
be interested in more restrictive choices imposing structured
constraints on the subsampling pattern; some examples are
given below.

The optimization problem in (14) is combinatorial, and in
general finding the exact solution is NP hard (e.g., this is true
for the special case in (6); see [19]). The key idea in all of the
special cases below is to identify advantageous combinatorial
structures in the problem in order to efficiently obtain near-
optimal solutions. In particular, we will see that submodularity
structures in the objective function, and matroid structures in
the constraint set, play a key role. We proceed by presenting
these definitions formally.

Definition 1. A set function h(Ω) mapping subsets Ω ⊆
{1, . . . , p} to real numbers is said to be submodular if, for
all Ω1,Ω2 ⊂ {1, . . . , p} with Ω1 ⊆ Ω2, and all i ∈
{1, . . . , p}\Ω2, we have

h(Ω1 ∪ {i})− h(Ω1) ≥ h(Ω2 ∪ {i})− h(Ω2). (16)

The function is said to be modular if the same holds true with
equality in place of the inequality.
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This definition formalizes the notion of diminishing returns:
Adding an element to a smaller set increases the objective
function more compared to when it is added to a larger set.
Our focus in this paper will be on submodular functions that
are also monotone, i.e., h(Ω2) ≥ h(Ω1) whenever Ω1 ⊆ Ω2.

Submodular or modular set functions often allow us to effi-
ciently obtain near-optimal solutions with matroid constraints
[17] which we now define.

Definition 2. Given V = {1, . . . , n} and a non-empty set of
subsets (of V ) A, the pair (V,A) is said to be a matroid if (i)
for any A ∈ A, all subsets A′ ⊆ A are also in A; (ii) given
A ∈ A and B ∈ A with |B| > |A|, there exists an element
v ∈ B\A such that A ∪ {v} ∈ A.

We will see in Section III-B that the cardinality of the
constraint set A plays a key role in determining the number
of training signals needed to obtain statistical guarantees on
near-optimality.

In the context of structured signal recovery, a particu-
larly notable example of a matroid constraint is multi-level
subsampling [6], where the indices {1, . . . , p} are split into
K disjoint groups with sizes {pk}Kk=1, and the number of
measurements within the k-th group is constrained to be nk,
with

∑K
k=1 nk = n. This corresponds to a matroid known

as the partition matroid [17]. In this case, the total number
of possible sparsity patterns is

∏K
k=1

(
pk
nk

)
. As opposed to the

random multi-level subsampling scheme in [6], our framework
also optimizes the samples within each level given the sparsity
constraints.

We can also go beyond matroid constraints; we mention one
additional example here. In the context of image compression
with image-independent subsampling, Ψ may correspond to
the wavelet basis, and a suitable choice for A forces the
coefficients to form a rooted connected subtree of the wavelet
tree of cardinality n [18], [20]. In this case, the total number
of subsampling patterns is the Catalan number, 1

n+1

(
2n
n

)
[18].

This does not correspond to a matroid constraint, but it can
nevertheless be handled using dynamic programming [20].

C. Average-case Criterion (f = favg)

We first consider the function favg(α1, . . . , αm) :=
1
m

∑m
j=1 αi, yielding the optimization problem

Ω̂ = arg max
Ω∈A

1

m

m∑
j=1

∑
i∈Ω

|〈ψi,xj〉|2, (17)

where ψi is the transpose of the i-th row of Ψ. This cor-
responds to maximizing the average energy in the training
signals, which may be preferable to the worst-case criterion
in (6) due to an improved robustness to outliers, e.g., corrupted
training signals.

Since the sum of (sub)modular functions is again
(sub)modular [21], we see that (17) is a modular maximiza-
tion problem, thus permitting an exact solution to be found
efficiently in several cases of interest.

Case 1 (No Additional Constraints): In the case that
A = {Ω : |Ω| = n}, the exact solution is found by sorting:
Select the n indices whose values of 1

m

∑m
j=1 |〈ψi,xj〉|2

are the largest. The running time is dominated by the pre-
computation of the values 1

m

∑m
j=1 |〈ψi,xj〉|2, and behaves as

O(mp2) for general matrices Ψ, or O(mp log p) for suitably
structured matrices such as Fourier and Hadamard.

Case 2 (Matroid Constraints): In the case that A cor-
responds to a matroid, we can also find the exact solution
by a simple greedy algorithm [17]: Start with the empty
set, and repeatedly add the item that increases the objective
value by the largest amount without violating the constraint,
terminating once n indices have been selected. The values
|〈ψi,xj〉|2 can be computed in O(mp2) (general case) or
O(mp log p) time (structured case), and the greedy algorithm
itself can be implemented in O(nmp) time, with the factor of
m arising due to the summation in (17).

In some cases, the complexity can be further improved;
in particular, for the above-mentioned multi-level sampling
constraint, the exact solution is found by simply performing
sorting within each level.

Case 3 (Other Constraints): As hinted above, the types
of constraints that can be efficiently handled in modular
optimization problems are not limited to matroids. Choosing
the setA that forces the coefficients to form a rooted connected
wavelet tree [18], [20], there exists a dynamic program for
finding the optimal solution in O(nmp) time [20]. We can also
obtain exact solutions for totally unimodular constraints via
linear programming (LP) relaxations; see [9] for an overview
in the context of sparse recovery.

D. Generalized Average-case Criterion (f = fgen)

We generalize the choice f = favg by considering
fgen(α1, . . . , αm) := 1

m

∑m
j=1 g(αj), yielding

Ω̂ = arg max
Ω∈A

1

m

m∑
j=1

g

(∑
i∈Ω

|〈ψi,xj〉|2
)
, (18)

for some function g : [0, 1] → R. We consider the case that
g is an increasing concave function with g(0) = 0.

Note that our framework also permits weighted averages
of the form 1∑

j βj

∑
j βjg(αj), which may be relevant when

some training signals are more reliable than others. More
generally, we can allow for weights βij on the terms |〈ψi,xj〉|,
which may be desirable when is is more important to capture
the energy in certain parts of the signal than in others. In this
paper, we focus on uniform weights for clarity of exposition.

By simple rearrangements, we can see that the choice
g(α) = 1−(1−α)q (q ≥ 1) in (18) is equivalent to considering
(13) with ‖·‖∞ replaced by ‖·‖qq . In particular, the case q = 1
recovers (17), and q = 2 is another reasonable choice that is
in a sense “in between” the choices q = 1 and q =∞. Section
IV shows that the choice q = 2 performs well numerically.

We established above that the argument to g in (18) is
a modular function of Ω. Recalling that g is concave and
increasing by assumption, it follows that (18) is a submodular
optimization problem [21, Sec. 1.1]. While finding the exact
solution is hard in general, we can efficiently find an approx-
imate solution with rigorous guarantees in several cases.

Case 1 (No Additional Constraints): In the case that A =
{Ω : |Ω| = n}, a solution whose objective value is within a
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multiplicative factor of 1 − 1
e of the optimum can be found

via the greedy algorithm [22].
Case 2 (Matroid Constraints): With matroid constraints,

the greedy algorithm is only guaranteed optimality to within
a factor of 1

2 [17]. However, there also exist polynomial-time
algorithms for obtaining solutions that are within a factor of
1 − 1

e of the optimum; for example, see [23], [24] and the
references therein.

E. Worst-case Criterion (f = fmin)

Finally, we consider the choices A = {Ω : |Ω| = n} and
fmin(α1, . . . , αm) := minj=1,...,m αj , yielding

Ω̂ = arg max
Ω : |Ω|=n

min
j=1,...,m

∑
i∈Ω

|〈ψi,xj〉|2, (19)

which coincides with (6). This can be thought of as seeking
robustness with respect to the “worst” image in the training
set, which may be desirable in some cases. To our knowledge,
the algorithm that we consider below has not been extended
to more general choices of A, and we thus leave such cases
for future work.

The objective function in (19) is the minimum of m modular
functions. This form of optimization problem was studied in
[19], where an algorithm called Saturate was proposed, which
has guarantees for the general template

max
Ω : |Ω|≤n

min
j=1,...,m

fj(Ω), (20)

where f1, · · · , fm are monotone submodular functions with
fj(∅) = 0. The algorithm takes a parameter α representing
how much the set size may exceed the “target” value n, and a
parameter ε used as a stopping criterion. The details are shown
in Algorithm 1, and the greedy partial cover (GPC) subroutine
is shown in Algorithm 2.

Algorithm 1 Saturate(f1, · · · , fm, n, α, ε) [19]
1: cmin ← 0; cmax ← minj fj({1, . . . , p}); Ωbest ← ∅
2: while (cmax − cmin) > ε do
3: c← (cmin + cmax)/2
4: f̄c(Ω)← 1

m

∑m
j=1 min{fj(Ω), c}

5: Ω̂← GPC(f̄c, c)
6: if |Ω̂| > αn then
7: cmax ← c
8: else
9: cmin ← c; Ωbest ← Ω̂

Algorithm 2 GPC(f̄c, c) (Greedy Partial Cover) [19]
1: Ω← ∅
2: while f̄c(Ω) < c do
3: ∆j ← f̄c(Ω ∪ {j})− f̄c(Ω)
4: Ω← Ω ∪ arg maxj ∆j

It is shown in [19, Thm. 5] that for integer-valued functions
{fj}mj=1 the Saturate algorithm finds a solution Ω̂ such that

min
j
fj(Ω̂) ≥ max

|Ω|≤k
min
j
fj(Ω), and |Ω̂| ≤ αk (21)

with α = 1 + log
(

maxi=1,...,p

∑m
j=1 fj({i})

)
. While we

do not have integer-valued functions in our setting, we may
use the observation from [19, Sec. 7.1] that in the general
case, analogous guarantees can be obtained at the expense
of having an additional term in α depending linearly on
the number of bits of accuracy. We observe that when ap-
plied to (19), we have log

(
maxi=1,...,p

∑m
j=1 fj({i})

)
=

log
(

maxi=1,...,p

∑m
j=1 |〈ψi,xj〉|

)
, which is in turn upper

bounded by logm since both ψi and xj have unit norm.
Thus, even with this crude bounding technique, this term only
constitutes a logarithmic factor.

Moreover, it was observed empirically in [19] that the
Saturate algorithm can provide state-of-the-art performance
even when the functions are not integer-valued and α is set to
one. Thus, although the theory in [19] does not directly capture
this, we expect the algorithm to provide a good approximate
solution to (19) even without the logarithmic increase in the
number of measurements.

The running time is O(p2m logm) in the worst case [19]. In
practice, we observe the algorithm to run much faster, as was
also observed in [19]. Moreover, we found the total number
of samples returned by the algorithm to be very close to its
maximum value αn (e.g., within 1%).

III. GENERALIZATION BOUNDS

The optimization problems in the previous section seek to
capture as much of the signal energy as possible on the training
signals xj , which also corresponds to minimizing the `2-norm
error of the decoder in (4) (cf., Section II-A). However, it is
not immediately clear to what extent the same will be true on a
new signal x. In this section, we take two distinct approaches
to characterizing this theoretically.

A. Deterministic Approach

This subsection provides simple bounds showing that the
energy loss remains small on any new signal x that is “close”
to the training data in a sense dictated by Ωc := {1, . . . , p}\Ω.
We assume that x is normalized in the same way as the training
signals, i.e., ‖x‖2 = 1; this is without loss of generality, since
general signals may be normalized to satisfy this condition,
and this normalization constant does not need to be known by
the recovery algorithm.

We first consider the generalized average-case criterion,
which includes the average-case criterion as a special case.

Theorem 1. (Deterministic generalization bound for f =
fgen) Fix δ > 0 and ε > 0, and suppose that for a set
of training signals x1, . . . ,xm with ‖xj‖2 = 1, we have a
sampling set Ω such that

1

m

m∑
j=1

g
(
‖PΩΨxj‖22

)
≥ g(1− δ). (22)

Then for any signal x with ‖x‖2 = 1 such that
1
m

∑m
j=1 ‖PΩcΨ(x− xj)‖22 ≤ ε, we have

‖PΩΨx‖22 ≥ 1−
(√
δ +
√
ε
)2
. (23)
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Proof. Substituting (11) into (22), we obtain 1
m

∑m
j=1 g(1 −

‖PΩcΨxj‖22) ≥ g(1 − δ). Recalling that g is concave by
assumption, applying Jensen’s inequality on the left-hand side
gives g

(
1 − 1

m

∑m
j=1 ‖PΩcΨxj‖22

)
≥ g(1 − δ). Since g is

also monotonically increasing by assumption, it follows that
1
m

∑m
j=1 ‖PΩcΨxj‖22 ≤ δ.

Next, since the average of squares is at least as large
as the square of the average, the previous condition
implies 1

m

∑m
j=1 ‖PΩcΨxj‖2 ≤

√
δ, and the assump-

tion 1
m

∑m
j=1 ‖PΩcΨ(x − xj)‖22 ≤ ε similarly implies

1
m

∑m
j=1 ‖PΩcΨ(x − xj)‖2 ≤

√
ε. We thus obtain from the

triangle inequality that

‖PΩcΨx‖2

≤ 1

m

m∑
j=1

(
‖PΩcΨxj‖2 + ‖PΩcΨ(x− xj)‖2

)
(24)

≤
√
δ +
√
ε. (25)

Taking the square and applying (11), we obtain (23).

The case f = favg corresponds to f = fgen with g(α) = α,
and in this case, the condition in (22) takes the particularly
simple form

1

m

m∑
j=1

‖PΩΨxj‖22 ≥ 1− δ, (26)

requiring that at least a fraction 1 − δ of the training signal
energy be captured on average.

We now turn to the worst-case criterion.

Theorem 2. (Deterministic generalization bound for f =
fmin) Fix δ > 0 and ε > 0, and suppose that for a set
of training signals x1, . . . ,xm with ‖xj‖2 = 1, we have a
sampling set Ω such that

min
j=1,...,m

‖PΩΨxj‖22 ≥ 1− δ. (27)

Then for any signal x with ‖x‖2 = 1 such that ‖PΩcΨ(x −
xj)‖22 ≤ ε for some j ∈ {1, . . . ,m}, we have

‖PΩΨx‖22 ≥ 1−
(√
δ +
√
ε
)2
. (28)

Proof. It follows from (11) and (27) that ‖PΩcΨxj‖22 ≤ δ
for all j. Hence, letting j be an index such that ‖PΩcΨ(x−
xj)‖22 ≤ ε, we obtain from the triangle inequality that

‖PΩcΨx‖2 ≤ ‖PΩcΨxj‖2 + ‖PΩcΨ(x− xj)‖2 (29)

≤
√
δ +
√
ε. (30)

Taking the square and applying (11), we obtain (28).

We note that a sufficient condition for ‖PΩcΨ(x−xj)‖22 ≤
ε is that ‖x − xj‖22 ≤ ε. However, this is certainly not
necessary; for example, when x = −xj , the latter is large,
whereas the former is small provided that the index set Ω
captures most of the signal energy.

We note that Theorems 1 and 2 are rather different despite
appearing to be similar. In Theorem 2, the definition of δ
corresponds to capturing the energy in all training signals,
and the definition of ε corresponds to the new signal being

close to some training signal (i.e., the minimum distance). In
contrast, in Theorem 1, both δ and ε are defined with respect
to the corresponding average.

B. Statistical Approach

Thus far, we have treated all of our signals as being
deterministic. We now turn to a statistical approach, in which
the training signals x1, . . . ,xm and the test signal x are
independently drawn from a common probability distribution
P on Cp. We assume that this distribution is unknown, and
thus cannot be exploited as prior knowledge for the design of
Ω. We also assume that ‖x‖2 = 1 almost surely for x ∼ P;
otherwise, we can simply replace x by x

‖x‖2 throughout.
In this setting, there is precise notion of a “best” subsam-

pling set: The set Ω∗ ∈ A that captures the highest proportion
of the signal energy on average is given by

Ω∗ = arg max
Ω∈A

E
[
‖PΩΨx‖22

]
. (31)

It is worth noting that, under our statistical model, one cannot
improve on this choice by moving to randomized subsampling
strategies. To see this, we write for any randomized Ω

E
[
‖PΩΨx‖22

]
= E

[
E
[
‖PΩΨx‖22

∣∣Ω]]. (32)

Then, by the mean value theorem, there exists a deterministic
set such that the argument to the outer expectation has a value
at least as high as the average.

Since the distribution P of x is unknown, we cannot expect
to solve (31) exactly. However, given m training samples, we
can approximate the true average by the empirical average:

Ω̂ = Ω̂(x1, . . . ,xm)

= arg max
Ω∈A

1

m

m∑
j=1

‖PΩΨxj‖22. (33)

This idea is known as empirical risk minimization in statistical
learning theory, and in the present setting, we see that it yields
precisely the optimization problem in (14) with f = favg.

We are now interested in determining how the average
energy captured by Ω̂ compares to the optimal choice Ω∗. To
this end, we introduce some definitions. We let Ex[·] denote
averaging with respect to x alone, so that for any function
h(x,x1, . . . ,xm), Ex[h(x,x1, . . . ,xm)] is a random variable
depending on the training signals. With this notation, we define
the random variable

∆n = ∆n(x1, . . . ,xm) (34)

:= E
[
‖PΩ∗Ψx‖22

]
− Ex

[
‖PΩ̂Ψx‖22

]
(35)

representing the gap to optimality as a function of the training
signals. In the following theorem, we bound this gap indepen-
dently of the distribution P.

Theorem 3. (Statistical generalization bound for f = favg)
Under the above statistical model, for any η > 0, we have
with probability at least 1− η that

∆n ≤

√
2

m

(
log |A|+ log

2

η

)
. (36)
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Proof. For brevity, we define γΩ(x) := ‖PΩΨx‖22. Moreover,
we define the empirical average

Êm[γΩ(·)] :=
1

m

m∑
i=1

γΩ(xj), (37)

which is a random variable depending on x1, . . . ,xm.
With these definitions, we have the following:

∆n = E[γΩ∗(x)]− Ex[γΩ̂(x)] (38)

=
(
E[γΩ∗(x)]− Êm[γΩ∗(·)]

)
+
(
Êm[γΩ∗(·)]− Êm[γΩ̂(·)]

)
+
(
Êm[γΩ̂(·)]− Ex[γΩ̂(x)]

)
(39)

≤
∣∣Êm[γΩ∗(·)]− E[γΩ∗(x)]

∣∣
+
∣∣Êm[γΩ̂(·)]− Ex[γΩ̂(x)]

∣∣ (40)

≤ 2 max
Ω∈A

∣∣Êm[γΩ(·)]− E[γΩ(x)]
∣∣, (41)

where (40) follows since Êm[γΩ∗(·)] ≤ Êm[γΩ̂(·)] by the
definition of Ω̂ in (33).

By the assumption that ‖x‖2 = 1, we have γΩ(x) ∈ [0, 1].
Moreover, using the definition in (37) and the fact that both x
and {xj}mj=1 have distribution P, the average of Êm[γΩ(·)] is
given by E[γΩ(x)]. It thus follows from Hoeffding’s inequality
[25, Sec. 2.6] that

P
[∣∣Êm[γΩ(·)]− E[γΩ(x)]

∣∣ > t
]
≤ 2e−2mt2 (42)

for any set Ω and constant t > 0. Thus, by the union bound,
we have

P
[

max
Ω∈A

∣∣Êm[γΩ(·)]− E[γΩ(x)]
∣∣ > t

]
≤ 2|A|e−2mt2 . (43)

The proof is concluded by setting t =
√

1
2m log( 2

η |A|) and
substituting the condition of the event into (41).

In the case that A = {Ω : |Ω| = n}, we have |A| =
(
p
n

)
,

and hence, Theorem 3 reveals that the performance of Ω̂ can
be made arbitrarily close to that of Ω∗ using m = O(n log p

n )
training signals, for any distribution P. Our numerical findings
in Section IV suggest that this bound may be pessimistic
in some specific scenarios, as we achieve good results even
when m is smaller than n. Nevertheless, it is reassuring that
the optimal performance can always be approached when the
number of training signals is large enough.

Clearly, considering a smaller set A yields an improved
bound in (36); in particular, this occurs for the multi-level
sampling and rooted connected tree structures in accordance
with the cardinalities given in Section II-B. On the other hand,
using a smaller set can also worsen the performance of Ω∗

itself, due to a smaller maximization set in (31). Thus, there
is a trade-off between the performance of the best choice
within the class considered, and the extent to which the bound
guarantees that the corresponding performance is approached
using few training samples.

Remark 1. Although we focused on f = favg for clarity,
the analysis remains valid with f = fgen provided that g is
bounded in [0, 1] (e.g., g(α) = 1 − (1 − α)2). Specifically,

we modify (31)–(35) by replacing the squared-norms ‖ · ‖22 by
g(‖ · ‖22), and similarly in the definition of γΩ(x) in the proof.

IV. NUMERICAL EXPERIMENTS

In this section, we present the results of numerical exper-
iments that illustrate the effectiveness of the learning-based
compressive subsampling approach. For a given number of
measurements, our consistent observation is that our approach
matches or improves the quality of signal recovery over the
randomized variable-density based sampling approaches. A
likely reason for the improvements is that we directly optimize
the sampling indices, as opposed to only optimizing auxiliary
parameters that are related to those indices.

We also identify several scenarios in which our learning-
based subsampling in tandem with the simple linear decoder
(4) outperforms randomized sampling techniques used in con-
junction with the non-linear decoder (5). Moreover, we find
in all of our examples that the improvements of the non-linear
decoders over the linear one are quite marginal even for the
randomized subsampling indices.

This is not conclusive evidence against the use of non-linear
decoders in these problems, since it may be possible to devise
more sophisticated techniques to optimize Ω specifically for
these decoders. Nevertheless, our observations support the
practitioners’ historical preference of simple decoders.

Throughout this section, the experiments are done using the
algorithms proposed in Section II: Sorting for favg, the greedy
algorithm for fgen, and the Saturate algorithm for fmin.

A. Kenya & ImageNet Data sets

We created an image data set in 16-bit tiff format of
187 Kenya images of resolution 2048× 2048 from one of the
authors’ personal collection, without any compression. Given
the high-resolution images, we used MATLAB’s imresize
function to create 1024 × 1024, 512 × 512, and 256 × 256
pixel images. We split the data set into a training set of
the first 137 images and a test set with the remaining
50 images. Here are some examples from this data set:

Figure 1 illustrates the compression performance of our
index selection using the Hadamard, discrete cosine (DCT),
and wavelet (Daub-4) transforms. In the figure, we compute
the square root of the empirical average of ‖x − x̂‖22 over
the test set for a range of n, and also determine the best
adaptive compression (i.e., the best image-dependent n-term
approximation in the measurement basis) as the baseline, to
reach an error level of 0.1, 0.05 and 0.01. Here we normalize
so that the total energy in each image is 1.

The learned indices for Hadamard-subsampling and DCT-
subsampling get within a factor of 2 of their corresponding
adaptive compression rates on the test data. In contrast, the
learned indices for wavelets are within a factor of 4 of their
adaptive compression rates. While the adaptive DCT and
wavelet compressions are close, the learned DCT-subsampling
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Fig. 1. (Top) Maximum compression factor to achieve a given `2-error
performance. (Middle) Average estimation error in conjunction with average
PSNR values. (Bottom) Selected indices at 25% compression with favg.

obtains compression rates within a factor of 2 of the adaptive
wavelet compression.

Overall, the learned DCT indices obtain the best compres-
sion performance on the test data. Moreover, to quadruple the
resolution at an error of 0.1, which corresponds to 25dB peak
signal-to-noise ratio (PSNR), we simply need to double the
number of samples. While we observe a similar behavior for
the average error level of 0.05, we need to commensurately
increase the number of samples with resolution for the error
level of 0.01, which corresponds to high levels of PSNR
values, as shown in Figure 1 (Middle).

Figure 1 (Bottom) shows the learned subsampling patterns.
The learned wavelet samples exhibit the expected parent-
child correlation on its decomposition hierarchy. Intriguingly,
while the learned DCT samples show circular symmetry, the
learned Hadamard samples exhibit an unexpected shape which
is typically not predicted by randomized approaches.

We made use of indices provided to us by the first author
of [4] for Hadamard sampling, which are based on the ran-
domized approach therein but with tuning done for the goal of
effectively compressing natural images. See Figure 2 (Right),
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Fig. 3. The performance of the nonlinear decoder vs. the linear decoder.

where a 25% compression rate is used. Using these indices and
the corresponding non-overlapping partitions (also shown in
the figure), we counted the number of samples in each partition
and created a corresponding set of constraints (cf., the multi-
level sampling defined in Section II). We then applied our
learning-based approach using the resulting constraint set A.
Surprisingly, the shape of the learned pattern differs from the
circularly symmetric version and outperforms the randomized
indices when we use the linear decoder; see Figure 2 (Left).

The theory associated with the approach of [4] requires the
basis pursuit (BP) decoder (5), with the sparsity basis Φ being
the wavelet decomposition. Figure 3 illustrates that the overall
improvement of this decoder over the linear one is limited,
and similarly for an additional non-linear decoder based on
minimizing the total variation (TV).
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Fig. 4. The performance of the nonlinear decoder vs. the linear decoder for
DCT measurements only.
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In summary, for this data set, replacing the random index set
coming from the randomized approach with the learned indices
leads to a noticeable improvement, whereas the improvements
from switching to non-linear decoders are marginal. It should
be noted that these decoders incur heavy computational costs;
some running times are summarized in Table I based on a
state-of-the-art primal-dual decomposition method [26].

TABLE I
KENYA IMAGES: `2-ERRORS VS. RUNNING TIMES

Resolution Recovery Sampling rate
6.25% 12.50% 25%

256
BP 0.102 / 6s 0.083 / 6s 0.063 / 6s
TV 0.102 / 27s 0.082 / 22s 0.062 / 20s

Adjoint 0.103 / 0.01s 0.084 / 0.01s 0.064 / 0.01s

512
BP 0.080 / 23s 0.063 / 22s 0.048 / 22s
TV 0.080 / 151s 0.063 / 162s 0.047 / 153s

Adjoint 0.081 / 0.03s 0.064 / 0.03s 0.049 / 0.02s

1024
BP 0.062 / 85s 0.049 / 85s 0.036 / 93s
TV 0.062 / 340s 0.049 / 614s 0.036 / 65s

Adjoint 0.063 / 0.08s 0.050 / 0.08s 0.037 / 0.09s

2048
BP 0.047 / 381s 0.036 / 366s 0.026 / 333s
TV 0.047 / 1561s 0.036 / 2501s 0.025 / 2560s

Adjoint 0.048 / 0.26s 0.037 / 0.29s 0.027 / 0.28s

As the Kenya data set size is quite limited, we performed
similar experiments on a much larger data set called Ima-
geNet.1 In particular, we consider the 2010 ImageNet Large
Scale Visual Recognition Challenge data set. This data set
consists of approximately 1.4 million images of various res-
olutions; see Figure 5 (top) for our training and test splits.
Since the data is already JPEG compressed with 8 bits, we
crop the existing high-resolution images in the central part of
the image in order to obtain low-resolution ones.

While the images are already compressed, Figure 5 (Middle)
illustrates that the qualitative behavior we have seen so far does
not change: Wavelets achieve the best adaptive compression
and the learned DCT subsampling performs the best in the test
data. We also observe that the learned indices for the rooted-
connected (RC) wavelet tree model generalize marginally
better than the learned wavelet sampling. Finally, Figure 5
(Bottom) shows that the distribution of the sampling patterns
for Hadamard and DCT do not exhibit circularly symmetric
shapes. Moreover, the learned wavelet indices appear to con-
centrate on the spatial center of the images.

B. iEEG Data set

This subsection focuses on an intracranial electro-
encephalography (iEEG) data set from the iEEG.org portal.

Currently, iEEG is an invasive procedure that permits the
recording of neuro-electrical signals via an array of electrodes
placed directly on the brain surface. A very active research
area concerns the design of implantable wireless devices that
do not require the patient to be tethered to an external recorder.
Efficient compression schemes based on compressive sensing
have been recently proposed in order to reduce transmission
power consumption [27]–[29]; however, they may use a large
chip area [28] or not be able to compress beyond the number
of channels [29].

We show the effectiveness of our approach on the micro-
electrode recordings from the I001_P034_D01 data set.
We consider only the recordings annotated as seizures, with

1Available at http://image-net.org
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Fig. 5. (Top) The test and training split sizes on the ImageNet data set.
(Middle) Average estimation error in conjunction with average PSNR values.
(Bottom) Selected indices at 12.5% compression with favg.
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Fig. 6. iEEG data: Recovery performance (Left) and recovery examples
(right): 16× compression (Top) and 32× compression (Bottom).

the exception of seizure 7, which is corrupted. Moreover,
we remove channel 1, which is inactive, and channel 7,
which erroneously records the AC signal powering the system
instead of the neuronal signal. We define signal windows
of p = 1024 samples and use seizures 1, 2, 3, 4, 5, 6, 8 for
learning the indices of the subsampled Hadamard transform
for compression, for a total of 5.8 million samples over 5
channels. We test the reconstruction performance of the chosen
indices on channels 1, 2, 3, 5 and 6 on the last seizure. For the
randomized variable-density sampling approach, we consider
non-linear reconstruction via wavelets and a tree-structure
promoting norm, shown in [30] to yield the best performance
on this type of data. For our learning-based approach, we again
use the simple linear decoder given in (4).

Figure 6 (Left) illustrates that the learning-based approach
outperforms the randomized variable-density approach. Note
that here we use the function fgen with g(α) = 1− (1− α)2,
as introduced in Section II-D. We use Hadamard sampling,
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TABLE II
OBJECTIVE VALUES OBTAINED FOR VARIOUS RECOVERY CRITERIA ON
THE IEEG DATA SET WITH p = 1024. CR STANDS FOR COMPRESSION

RATE.

CR Criterion
Metric

favg fgen fmin
Train Test Train Test Train Test

2×
favg 0.9980 0.9975 0.999998 0.999997 0.9955 0.9945
fgen 0.9980 0.9975 0.999998 0.999997 0.9955 0.9945
fmin 0.9977 0.9972 0.999997 0.999996 0.9963 0.9943

4×
favg 0.9919 0.9902 0.99997 0.99995 0.9843 0.9804
fgen 0.9919 0.9901 0.99997 0.99995 0.9843 0.9805
fmin 0.9913 0.9896 0.99996 0.99994 0.9862 0.9797

8×
favg 0.9790 0.9756 0.9998 0.9997 0.9534 0.9539
fgen 0.9789 0.9757 0.9998 0.9997 0.9555 0.9541
fmin 0.9747 0.9724 0.9997 0.9996 0.9614 0.9504

16×
favg 0.9466 0.9407 0.9987 0.9982 0.8501 0.8063
fgen 0.9460 0.9422 0.9987 0.9983 0.8633 0.8338
fmin 0.9372 0.9330 0.9983 0.9977 0.8737 0.8149

32×
favg 0.8642 0.8618 0.9919 0.9906 0.6734 0.6921
fgen 0.8642 0.8618 0.9922 0.9906 0.6731 0.6920
fmin 0.8254 0.8299 0.9873 0.9861 0.6970 0.6522

64×
favg 0.6643 0.6883 0.9554 0.9539 0.4549 0.2939
fgen 0.6643 0.6883 0.9554 0.9539 0.4550 0.2944
fmin 0.6296 0.6639 0.9462 0.9471 0.4815 0.2946

since it is easy to implement in digital hardware [28]. The
density function of [3] is parametrized by the radius of fully
sampled region, r, and the polynomial degree, d. We choose
the parameters’ values that yield the lowest reconstruction
error on the training set for each compression rate in the
ranges r = 4

2p ,
5
2p , . . . ,

16
2p and d = 1, 2, . . . , 75, taking the

best realization over 20 random draws in each case.
Figure 6 (Left) shows example reconstructions at 16× and

32× compressions. A likely reason for the reduced error due
to our approach is that we do not assume any shape for the
distribution of the indices.

In Table II, we present the values of favg, fgen and fmin

obtained by our learning-based algorithms for various com-
pression ratios with p = 1024. Note that we normalize the
signals to have unit energy, and hence 1 is the highest possible
value of each objective. As expected, the procedure trained for
a given objective always gives the best value of that objective
on the training data. However, it is sometimes the case that the
indices obtained for optimizing favg and fgen yield a better
value of fmin on the test set compared to the indices used
for optimizing fmin itself; for example, see the final column
corresponding to 4× or 32× compression.

C. MRI

Our final example considers a classical MRI application
in medical imaging. For our illustrations, we use a data set
consisting of 3-dimensional volumes of knee images, fully
scanned on a GE clinical 3T scanner.2 We focus our atten-
tion on a commonly-considered sampling technique based on
subsampling the k-space in the x and y directions, while fully
sampling the z direction. Note that we do not consider certain
physical constraints such as those addressed in [7]; our focus
is on using the data to illustrate our learning-based approach,
rather than demonstrating direct real-world applicability.

We pick the first half of the patients in the given data set for
training and test our results on the remaining 10 patients. For
the nonlinear decoder, we use basis pursuit (BP) combined
with complex dual-tree wavelets, since this has been shown
to give superior performance compared to other basis/solver

2Available at http://mridata.org/fullysampled

combinations such as those involving total variation (TV)
minimization [31]. Also following [31], in this work we are
not concerned with the denoising aspect, but instead we are
only comparing our reconstructions to a fully sampled noisy
image which constitutes a ground truth that is used to compute
the error and PSNR. To solve the BP algorithm, we made use
of NESTA [32].

As a baseline for the subsampling map, we use the variable-
density functions proposed in [3] and [4], which are deter-
mined by various parameters. Specifically, the former has a
radius r within which full sampling is done and a polynomial
degree d, and the latter has a radius r within which full
sampling is done, a number of levels N , and two exponential
parameters a and b.3 We note that letting N be large and r
be small in [4], we recover a very similar sampling pattern to
that proposed in [11], which has only the parameters a and b.

For each of [3] and [4], we do a sweep over the parameters,
generate 20 random subsampling patterns for each set of
parameters, and finally choose the pattern with the best average
PSNR on 100 fixed and randomly selected training images.
For [3], we sweep over r ∈ {0, 0.025, . . . , 0.5} and d ∈
{0, 0.25, . . . , 10}. For [4], we let the number of levels N =
100 be fixed and large, sweep over r ∈ {0, 0.025, . . . , 0.5} and
a ∈ {0.05, 0.1, . . . , 8, 9, . . . , 25}, and compute b via a binary
search in order to ensure that the total number of samples
is exactly n. We note that the parameter sweeps for the non-
linear decoder are highly time consuming, taking considerably
longer than our combinatorial optimization problems for the
linear decoder.

Figure 7 illustrates the best-performing randomized indices
vs. our learned set of indices in the k-space along the x and y
directions. When optimized for the linear decoder, the indices
of [3], [4] concentrate on low frequencies. While our strategies
based on optimizing favg and fgen (again using g(α) = 1 −
(1−α)2) also do this to some extent, there is a stark contrast
in the shape, since we do not restrict ourselves to patterns
exhibiting circular symmetry.

Table III illustrates the overall test performance of each
approach, in addition to the error obtained by the best adaptive
(i.e., image dependent) n-sample approximations with respect
to the k-space basis. Based on these numbers, the learning-
based approach slightly outperforms the randomized variable-
density based approach of Roman et al. [4], which in turn
slightly outperforms that of Lustig et al. [3]. The best PSNR
in each case is achieved by the indices corresponding to
favg; with this choice, even the linear decoder leads to an
improvement over [3] and [4] used with BP, while using our
indices alongside BP provides a further improvement. Finally,
based on Figure 8, it appears that the improvement of our
indices is actually more significant in the relevant parts of the
image where the knee is observed, with finer details being
seen at 6.25% and 12.5% sampling rates.

V. CONCLUSION AND DISCUSSION

We have provided a principled learning-based approach
to subsampling an orthonormal basis for structured signal

3We use slightly different notation to [4] to avoid clashes with our notation.
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linear BP linear BP favg fgen fmin

Roman et al. Lustig et al.

Fig. 7. The index sets of the tuned random variable sampling schemes [3], [4] vs. our learned-based approach with various optimization criteria. The sampling
ratios of the three rows are 6.25%, 12.5% and 25%.

TABLE III
MRI: AVERAGE `2-ERRORS AND AVERAGE PSNR

Indices
Sampling rate

6.25% 12.50% 25%
`2 PSNR `2 PSNR `2 PSNR

Adaptive 0.371 25.299 dB 0.328 26.372 dB 0.261 28.362 dB
favg linear 0.399 24.673 dB 0.377 25.193 dB 0.339 26.126 dB
fgen linear 0.404 24.549 dB 0.386 24.959 dB 0.352 25.757 dB
fmin linear 0.408 24.462 dB 0.385 24.969 dB 0.345 25.950 dB

Lustig et al. linear 0.404 24.561 dB 0.378 25.148 dB 0.340 26.095 dB
Roman et al. linear 0.401 24.625 dB 0.378 25.161 dB 0.339 26.123 dB

favg BP 0.398 24.699 dB 0.376 25.210 dB 0.338 26.145 dB
fgen BP 0.399 24.689 dB 0.381 25.094 dB 0.347 25.901 dB
fmin BP 0.402 24.621 dB 0.380 24.105 dB 0.342 26.040 dB

Lustig et al. BP 0.401 24.640 dB 0.378 25.167 dB 0.341 26.076 dB
Roman et al. BP 0.405 24.526 dB 0.381 25.080 dB 0.340 26.085 dB

recovery, thus providing a powerful alternative to traditional
approaches based on parametrized random sampling distri-
butions. We proposed combinatorial optimization problems
based on the average-case and worst-case energy captured in
the training signals, obtained solutions via the identification
of modularity and submodularity structures, and provided
both deterministic and statistical generalization bounds. Our
numerical findings reveal that our approach performs well on
a variety of data sets, while having the desirable features of
avoiding any reliance on randomization, and permitting the
use of an efficient and scalable linear decoder.

While our numerical results support the use of the simple
linear decoder in a variety of settings, we note that there
are cases where it is unsuitable [8], [10]. In particular, to
perform well, we need to capture most of the energy in x
using only n measurements, and hence we require a degree of
compressibility in the measurement basis Ψ.

A simple example where the linear decoder is not suitable
is when x is sparse in the canonical basis, whereas the
measurements are taken in the Fourier basis. In this case, a
large number of measurements is required to capture most of
the energy, whereas for non-linear decoders, several results
on the exact recovery of s-sparse signals are known using
only n = O(s logν p) measurements for some ν > 0 [2]. See
[10] for a related example with radial Fourier sampling, where

for a particular set of measurements it is observed that non-
linear decoding is highly preferable. Based on these examples,
extending our learning-based approach to non-linear decoders
is a very interesting direction for further research.

A variety of other extensions would also be valuable, in-
cluding the consideration of measurement noise, imperfectly-
known training signals, more general recovery criteria beyond
the `2-error, and further measurement constraints motivated by
applications (e.g., see [7]).
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Fig. 8. MRI reconstruction example for the test patient 11. The top-left image corresponds to the original (fully sampled) data, and the remainder of the first
row corresponds to using the best k coefficients in an image-adaptive fashion.


