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Abstract

We consider a stochastic linear bandit prob-
lem in which the rewards are not only subject
to random noise, but also adversarial attacks
subject to a suitable budget C (i.e., an up-
per bound on the sum of corruption magni-
tudes across the time horizon). We provide
two variants of a Robust Phased Elimination
algorithm, one that knows C and one that
does not. Both variants are shown to at-
tain near-optimal regret in the non-corrupted
case C = 0, while incurring additional addi-
tive terms respectively having a linear and
quadratic dependency on C in general. We
present algorithm-independent lower bounds
showing that these additive terms are near-
optimal. In addition, in a contextual set-
ting, we revisit a setup of diverse contexts,
and show that a simple greedy algorithm is
provably robust with a near-optimal additive
regret term, despite performing no explicit
exploration and not knowing C.

1 Introduction

Over the past years, bandit algorithms have found ap-
plication in computational advertising, recommender
systems, clinical trials, and many more. These algo-
rithms make online decisions by balancing between
exploiting previously high-reward actions vs. exploring
less known ones that could potentially lead to higher re-
wards. Bandit problems can roughly be categorized [18]
into stochastic bandits, in which subsequently played
actions yield independent rewards, and adversarial
bandits, where the rewards are chosen by an adversary,
possibly subject to constraints. A recent line of works
has sought to reap the benefits of both approaches by
studying bandit problems that are stochastic in na-
ture, but with rewards subject to a limited amount of
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adversarial corruption. Various works have developed
provably robust algorithms [12, 24, 4, 21], and attacks
have been designed that cause standard algorithms to
fail [10, 12, 13, 22].

While near-optimal theoretical guarantees have been
established in the case of independent arms [12], more
general settings remain relatively poorly understood
or even entirely unexplored; see Section 1.2 for details.
Our primary goal is to bridge these gaps via a detailed
study of stochastic linear bandits with adversarial cor-
ruptions. In the case of a fixed finite (but possibly
very large) set of arms, we develop an elimination-
based robust algorithm and provide regret bounds with
a near-optimal joint dependence on the time horizon
and the adversarial attack budget, demonstrating dis-
tinct behavior depending on whether the attack budget
is known or unknown. In addition, we introduce a
novel contextual linear bandit setting under adversarial
corruptions, and show that under a context diversity
assumption, a simple greedy algorithm attains near-
optimal regret under adversarial corruptions, despite
having no built-in mechanism that explicitly encourages
exploration or robustness.

1.1 Problem Setting

We consider the stochastic linear bandit setting with
a given set of arms A0 ⊂ Rd of finite size k, and
adversarially corrupted rewards. At each round t ∈
{1, . . . , T}:

• The learner chooses an action At ∈ A0.

• The adversary observes At and decides upon the
attack/corruption ct(At); in addition, ct(·) may
(implicitly) depend on other problem parameters,
as detailed below.

• The learner receives a corrupted reward Yt:

Yt = 〈θ,At〉+ εt + ct(At), (1)

where θ ∈ Rd is an unknown parameter vector, and
(εt)

T
t=1 is a random noise term, which is assumed

to be zero-mean and 1-sub-Gaussian.

We assume that the action feature vectors are unique,
span Rd, and are bounded, i.e., ‖a‖2 ≤ 1,∀a ∈ A0.
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We similarly make the standard assumption ‖θ‖2 ≤ 1,
which implies that |〈θ, a〉| ≤ 1,∀a ∈ A0.

We consider an adversary/attacker that has complete
knowledge of the problem – it knows bothA0 and θ, and
observes both the precise arm pulled and the noise re-
alization εt before choosing its attack. The total attack
budget of the adversary is given by

∑T
t=1 |ct(At)| ≤ C.

We will consider both the cases that C is known and
unknown to the learner.

The goal of the learner is to minimize the cumulative
regret, defined as

RT =

T∑
t=1

max
a∈A0

〈θ, a−At〉. (2)

Broadly speaking, we say that an algorithm that at-
tains low regret (e.g., sublinear scaling RT = o(T )) is
corruption-tolerant or robust to adversarial attacks.

As noted in [24], one could alternatively count the
corruption as being part of the reward and define regret
with the corruption included. Both notions are of
interest depending on the application (e.g., depending
on whether a fake ad click is considered beneficial or
not). The two notions differ by at most O(C), whereas
our upper bounds will contain at least an O(C log T )
term. In addition, in the multi-armed bandit setting,
Ω(C) lower bounds were shown for both notions in [24].

1.2 Related Work

Recent surveys on bandit algorithms can be found in
[18, 28]; here we focus on the most relevant works con-
sidering stochastic settings with adversarial corruptions
and bandit attacks.

Adversarial attacks on standard bandit algorithms (e.g.,
UCB, ε-greedy, and Thompson sampling) were intro-
duced for the case of independent arms (i.e., a classical
multi-armed bandit setting) in [13, 22, 23], and for
linear bandits in [10]. We will use the latter in our ex-
periments to test robustness of the proposed algorithms,
along with other heuristic attacks.

In the case of independent arms, Lykouris et al. [24]
show that a simple elimination algorithm with enlarged
confidence bounds is robust and near-optimal when the
attack budget C is known. For unknown C, random-
ized algorithm is given whose regret bound roughly
amounts to scaling the uncorrupted regret by C, i.e.,
multiplicative dependence. Subsequently, Gupta et
al. [12] gave an improved algorithm whose regret is
near-optimal, with an additive dependence on C.

Bogunovic et al. [4] consider corruption-tolerant ban-
dits for functions with a bounded RKHS norm, which
includes linear bandits as a special case. The algorithm

of [4] is based on that of [24], and has analogous guar-
antees. However, even in the case of known C, the best
dependence obtained is multiplicative; the possibility
of additive dependence was left as an open problem,
which we resolve in this work in the linear case.

Li et al. [21] also study stochastic linear bandits with
adversarial corruptions. A distinction in [21] is that
the regret bounds are instance-dependent, relying on
positive gaps between the function values at corner
points of the polyhedral domain. These results are
distinct from the instance-independent bounds with a
finite number of arms that we seek in this paper, and
neither can be deduced from the other; see [4, App. K]
for further discussion, as well as Remark 1 below.

It is worth noting that the above-mentioned works
[24, 12, 4, 21] consider a weaker adversary that can-
not observe the current action, and this has often also
been assumed when designing efficient bandit attacks
[13, 22]. Our more powerful adversary has also been
considered previously (e.g., see [22, Fig. 2]), and natu-
rally, any given upper bound on regret is stronger the
more powerful of an adversary it applies to.

In Appendix F, we discuss further existing works that
are less directly related to ours compared to those above,
including distinct adversarial settings (e.g., handled by
the EXP2 and EXP3 algorithms), “best of both worlds”
results for stochastic and adversarial bandits, model
mismatch and misspecification, and fractional/Huber-
like contamination models.
Remark 1. Returning to the results in [21], one may
note that instance-dependent bounds can potentially be
transferred to instance-independent bounds. However,
we show in Appendix G that doing this for the results
in [21] would at best lead to RT = O(T 2/3 +

√
CT ),

which is strictly higher than than our analogous result
(Theorem 2) whenever C = o(T 1/3). This is despite
the fact that we are considering a stronger adversary.
However, it should be kept in mind that the domains
adopted are different (polyhedral vs. finite), posing an-
other hurdle that would need to be overcome to transfer
results from one setting to the other.

1.3 Contributions

Our main contributions are as follows:

• For known C, we present a Robust Phased Elim-
ination algorithm, and show that it recovers a
near-optimal regret bound when C = 0, while
incurring an additive O(d3/2C log T ) term (up to
log log(dT ) factors) more generally. A standard
lower bound argument [24] shows that Ω(C) de-
pendence is unavoidable, thus certifying the upper
bound as being optimal up to logarithmic factors
when d = O(1) (the precise d dependence is not a
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main focus of our work).

• For unknown C, we modify our algorithm to grad-
ually decrease its confidence bound enlargement
term over time, and show that we only pay a
further O(C2) term compared to the known C
case. While this limits the regime of sublinear
regret to C = o(

√
T ) (in contrast with C = o(T )

when C is known), we additionally provide a novel
algorithm-independent lower bound showing that
this is unavoidable for any algorithm that achieves
a near-optimal non-corrupted (C = 0) bound.
Thus, we prove a fundamental difficulty in being
robust against our strong adversary when C is
unknown, and demonstrate a fundamental gap
between the known C and unknown C settings.

• We introduce a linear contextual problem with ad-
versarial attacks, and show that under the model
of diverse contexts from [14], the greedy algorithm
not only attains near-optimal regret in the uncor-
rupted setting (as shown in [14]), but is also robust
to adversarial attacks.

2 Algorithm and Regret Bounds

We present our Robust Phased Elimination algorithm
in Algorithm 1, which builds on non-robust elimination
algorithms [18, 19, 30], with some important differences
outlined in Remark 3 below. The known C vs. unknown
C variants only differ on Line 1. The algorithm runs in
epochs of exponentially increasing length and maintains
a set of potentially optimal actions. In every epoch,
the following steps are performed: (i) compute a near-
optimal experimental design over a set of potentially
optimal actions, and play each action from this subset
in proportion to the computed design (Lines 2-4); (ii)
compute an estimate of θ, and use it to eliminate actions
that appear suboptimal (Lines 5-6). We proceed by
describing these steps in more detail.

Action selection. To introduce the action selection
procedure, consider the problem of finding a probability
distribution ζ : A → [0, 1] that solves the following:

minimizeζ maxa∈A‖a‖2Γ(ζ)−1 s.t.
∑
a∈A

ζ(a) = 1,

(3)
where Γ(ζ) =

∑
a∈A ζ(a)aaT , and ‖a‖M =

√
aTMa.

A classical result from [16] states that the optimal
solution ζ∗ exists, and achieves maxa∈A ‖a‖2Γ(ζ∗)−1 = d

with |supp(ζ∗)| ≤ d(d+1)
2 . For our purposes, however, it

suffices to solve the problem in (3) only near-optimally.
As noted in [19], there exists a near-optimal design of
smaller support than d(d + 1)/2. In particular, if A
spans Rd,1 then we can efficiently compute ζ : A →

1See Remark 2 below for the general case.

[0, 1] such that

max
a∈A
‖a‖2Γ(ζ)−1 ≤ 2d, |supp(ζ)| ≤ 4d(log log d+ 18)

(4)
This follows from [29, Proposition 3.17], who provide a
polynomial-time Frank-Wolfe algorithm.

Hence, in every epoch h, the algorithm recomputes a
near-optimal design from (4) over a subset of the ac-
tions that are still potentially optimal, i.e., Ah. It then
plays each action from this subset in proportion to the
computed design, but it also makes sure that every arm
in its support is played at least some minimal number
of times dνmhe, where ν is an input truncation param-
eter to be chosen below, and mh is an exponentially
increasing parameter with respect to the epoch length.

Parameter estimation and arm elimination.
Consider the estimator given in (6). This estimator
only depends on the observations received in the cur-
rent epoch, and hence, it is not affected by attacks
suffered during previous epochs. However, it can still
be biased due to the adversarial attacks suffered in the
current epoch, and we need to account for this bias.
In Lemma 4 (Appendix A), for any of the remaining
potentially optimal actions, we bound the difference
of the true mean reward and estimated one, and show
that this error grows linearly with the total attack bud-
get C. Hence, the algorithm makes use of the enlarged
confidence bounds in (8) to retain potentially optimal
arms. Moreover, we show that when C is known, our
estimator is guaranteed to have sufficient accuracy so
that the optimal arm is always retained in (8) with
high probability. For unknown C, this is not always
the case, but we can control the level of suboptimality
of the arms that are retained.

The estimator of θ is robust due to the fact that it
averages the rewards corresponding to the same played
action, reducing the effect of the attack. Intuitively,
actions that have higher importance according to the
found near-optimal design are played more times than
others. Consequently, it is harder for the adversary
to corrupt them as it needs to use more of the attack
budget. In addition, due to the introduced truncation,
the algorithm plays each arm in the support of the
computed design a fixed minimum number of times.
Remark 2. The following observations from [19] are
useful: (i) While (4) is stated assuming the arms span
Rd, we can simply work in the lower-dimensional sub-
space otherwise (e.g., when k < d); (ii) We can extend
the algorithm and its analysis to infinite-arm settings
using a covering argument.
Remark 3. Phased elimination algorithms (without
robustness to adversarial attacks) have previously been
considered in various settings, including the standard
setting [18, Ch. 22], misspecified setting [19], and graph
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Algorithm 1 Robust Phased Elimination

Require: ActionsA0 ⊂ Rd, confidence δ ∈ (0, 1), trun-
cation parameter ν ∈ (0, 1), time horizon T

1: Initialize2 m0 = 4d(log log d+18), and for each h ∈
{0, 1, . . . , log2 T − 1}, set Ĉh = C for known C, or
Ĉh = min{

√
T

m0 log2 T
,m0

√
d2log2 T−h} for unknown

C. Initialize h = 0.
2: Compute design ζh : Ah → [0, 1] such that

max
a∈Ah

‖a‖2Γ(ζh)−1 ≤ 2d, and |supp(ζh)| ≤ m0. (5)

3: Set uh(a) = 0 if ζh(a) = 0, and uh(a) =
dmh max{ζh(a), ν}e otherwise.

4: Take each action a ∈ Ah exactly uh(a) times
with corresponding features (At)

uh
t=1 and rewards

(Yt)
uh
t=1 (implicitly depending on h), where uh =∑

a∈Ah uh(a).
5: Estimate the parameter vector θ̂h:

θ̂h = Γ−1
h

uh∑
t=1

Atuh(At)
−1

∑
s∈T (At)

Ys, (6)

Γh =
∑
a∈Ah

uh(a)aaT , (7)

where T (a) =
{
s ∈ {1, . . . , uh} : As = a

}
is the set

of times at which arm a is played.
6: Update the active set of arms:

Ah+1 ←
{
a ∈ Ah : max

a′∈Ah
〈θ̂h, a′ − a〉

≤ 2
√

4d
mh

log
(

1
δ

)
+ 2Ĉh

mhν

√
4d(1 + νm0)

}
. (8)

7: Set mh+1 ← 2mh, h← h+ 1 and return to step 2
(terminating after T total arm pulls).

bandits [30]. Among these, our algorithm is most sim-
ilar to [19], but has several important differences: (i)
We use a different and more robust estimator of θ; (ii)
The confidence bounds are enlarged in terms of Ĉh to
account for adversarial corruptions; (iii) The trunca-
tion parameter is introduced to ensure that each arm is
pulled enough; (iv) In the unknown C case, we need to
carefully choose the sequence Ĉh to trade off robustness
against aggressiveness in eliminating suboptimal arms;
(v) In contrast to the vast majority of existing elimi-
nation algorithms, the optimal arm may be eliminated
in the unknown C setting (i.e., the confidence bounds
may not be “valid”), but this only occurs when the best
remaining arm is still good enough to control the regret.

2.1 Upper Bounds on Regret

We first provide a regret bound for the known C case,
proved in Appendix A.
Theorem 1. For any attack budget C ≥ 0, with proba-
bility at least 1 − δ, the Robust Phased Elimination
algorithm with known C and truncation parameter
ν = 1

4d(log log d+18) satisfies

RT = Õ
(√

dT log
(
k
δ

)
+ Cd3/2 log T

)
, (9)

where the notation Õ(·) hides log log(dT ) factors.

When C = 0, we recover the scaling of [18, Thm. 22.1],
which is near-optimal in light of known lower bounds
[8]. In Section 2.2, we will argue that the second term
is also near-optimal.

Next, we consider the case that the total attack budget
C is unknown to the learner. We start by discussing
the choice of Ĉh in Algorithm 1. Let H be the number
of epochs, and note that H̃ = log2 T be a deterministic
upper bound onH (see Appendix A.2 for a short proof).
Then, the choice in Algorithm 1 can be rewritten as
Ĉh = min{

√
T

m0 log2 T
,m0

√
d2H̃−h}. Observe that the

epochs’ lengths uh and corruption thresholds Ĉh are
exponentially increasing and decreasing, respectively.
It follows that the algorithm is more cautious in early
epochs (i.e., uses larger thresholds). Our second main
result stated is as follows, and proved in Appendix A.

Theorem 2. For any C ≤
√
T

4d(log log d+18) log T , with
probability at least 1−δ, the Robust Phased Elimination
algorithm with unknown C and truncation parameter
ν = 1

4d(log log d+18) satisfies

RT = Õ
(√

dT log
(
k
δ

)
+ Cd3/2 log T + C2

)
. (10)

This result matches that of Theorem 1, but with an
additional penalty of C2. In fact, due to this penalty,
the regret bound (10) trivially holds when C = Ω(

√
T ),

because we have RT ≤ 2T due to our assumption
of bounded rewards. If d = ω(1), then there still
remains the regime where

√
T

(d log log d) log T � C �
√
T ,

but in any case, one can slightly increase the final term
and state that RT = Õ

(√
dT log

(
k
δ

)
+ Cd3/2 log T +

C2d2(log T )2
)
for arbitrary C.

At this stage, observing that our regret bound is not
sublinear in T when C = Ω(

√
T ), the natural question

arises as to whether attaining such a goal is impossible
for all robust bandit algorithms. In the following subsec-
tion, we use an algorithm-independent lower bound to

2When d = 1, we have log log d = −∞, but the results
hold with log log d replaced by log(1 + log d).
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provide a partial answer to this question; specifically,
such a goal is indeed impossible (up to logarithmic
factors) whenever the algorithm is required to have
order-optimal regret in the uncorrupted (C = 0) case.

2.2 Algorithm-Independent Lower Bounds
on Regret

Using the same reasoning as the standard multi-armed
bandit setting [24], it is straightforward to see that
Ω(C) regret is unavoidable: The adversary can simply
shift all rewards to zero for the first C rounds, and the
learner cannot do better than random guessing. For
completeness, this argument is given in more detail
in Appendix C. This argument holds even when C
is known, and thus, we see that the second term in
Theorem 1 is optimal up to at most an Õ(log T ) factor
for fixed d. We expect that an improvement on the d3/2

dependence may be possible, but the following result,
proved in Appendix C, shows that at least Ω(Cd) is
unavoidable.

Theorem 3. For any dimension d, there exists an
instance with k = d such that any algorithm (even
with knowledge of C) must incur Ω(Cd) regret with
probability at least 1

2 .

Next, we provide another lower bound that will allow
us to show a sense in which the C2 term appearing
Theorem 2 cannot be significantly improved.

Theorem 4. For d = 2 and k = 2, for any algorithm
that guarantees RT ≤ R̄(0)

T with probability at least 1−δ
for a given uncorrupted regret bound R̄(0)

T ≤ T
16 when

C = 0, there exists an instance in which RT = Ω(T )

with probability at least 1− δ when C = 2R̄
(0)
T .

The proof is given in Appendix C. While we focus on
the simplest case d = k = 2, the proof can also be
adapted to more general choices.

Discussion. Consider the general goal of attaining a
regret upper bound of the form

RT ≤ R̄(0)
T + f(C) log T, (11)

for some f(·) satisfying f(0) = 0. Here we let the
second term contain a log T factor in accordance with
our upper bounds, but the following discussion still
applies with only minor modifications when the log T
factor is changed to poly(log T ) or similar.

At first glance, it appears that f(C) should ideally
be linear in C, and R̄

(0)
T should ideally be an order-

optimal regret bound for the non-corrupted setting.
However, Theorem 4 shows that we cannot have both
terms exhibiting their “ideal” behavior simultaneously.
To see this, note that the ideal uncorrupted regret
bound behaves as R̄(0)

T = Θ̃(
√
T ) (for fixed d, k, and

δ) [8, 18]. Then, to be consistent with Theorem 4, we
require f(C) log T = Ω̃(T ) for C = Θ(

√
T ), and hence

f(C) = Ω̃
(
C2

logC

)
.

On the other hand, it may be possible remove the C2

term from f(C) (i.e., improve robustness), and to attain
sublinear regret for certain cases with C = Ω(

√
T ), if

one is willing to pay the price of a worse uncorrupted
regret bound. This idea is left for future work.

2.3 Summary of Upper vs. Lower Bounds

We conclude this section with a short summary of how
the upper and lower bounds compare in various scaling
regimes of C and T , when the other parameters (d, k, δ)
are held fixed:

• When C is known, the optimal regret is between
Ω(
√
dT+C

)
and Õ(

√
dT+C log T

)
for any C ≤ T ;

• For C = O
(
T 1/4

log T

)
, the optimal regret scales as

Θ̃
(√
dT
)
for both known and unknown C;

• For C = Ω(
√
T

log T ), we do not provide any sublinear
regret bound for when C is unknown, but Theorem
4 shows that, in fact, such a bound cannot be
expected for C = Ω(

√
T ) unless the uncorrupted

regret increases significantly.
• For C in between the previous two dot points (e.g.,
C = Θ(T a) with 1

4 < a < 1
2 ), our upper bound

for unknown C exhibits strictly higher scaling
than the uncorrupted regret (due to the C2 term),
and it remains open as to what extent this is
unavoidable.

3 Greedy Algorithm in the
Contextual Setting

In this section, we consider a k-arm linear contextual
bandit problem with a single unknown d-dimensional
parameter vector θ ∈ Rd (e.g., see [14]). In each round
t, contexts a1,t, . . . , ak,t are presented to the learner,
each in Rd and associated to one action. The learner
then chooses an action indexed by It ∈ {1, . . . , k} and
observes the corrupted reward

Yt = 〈θ, aIt,t〉+ εt + ct(aIt,t), (12)

where the same assumptions from Section 1.1 hold for
both (εt)

T
t=1 and ct(·) (with attack budget C), and

‖θ‖2 ≤ 1. Similar to (2), the cumulative regret is
RT =

∑T
t=1 maxi∈{1,...,k}〈θ, ai,t − aIt,t〉.

In general, the introduction of contexts may signifi-
cantly complicate the problem, with algorithms such
as the one in Section 2 being difficult to extend, partic-
ularly with unknown C. However, perhaps surprisingly,
a line of recent works has demonstrated that simple
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exploration-free greedy methods can provably work well
(in the non-corrupted setting) under mildassumptions
on the contexts. These assumptions amount to kinds
of context diversity [3, 14, 26] ensuring that the col-
lected samples are sufficiently informative for learning
θ accurately.

Most related to this paper is [14], who analyze the
greedy algorithm in the case that arbitrary context vec-
tors undergo small random perturbations. Motivated
by these results, we investigate the performance of the
greedy algorithm under the same assumption on the
contexts, but with the addition of adversarial attacks.
Our main finding is that the context diversity assump-
tion not only removes the need for explicit exploration
[14], but also automatically inherits near-optimal ro-
bustness to adversarial attacks, with no need to know
the attack budget C.

Context generation. In more detail, the setup
of [14] is introduced as follows: An arbitrary tuple
µ1,t, . . . , µK,t of mean context vectors is given (possibly
selected by an adaptive adversary based on the history
of contexts, actions, and rewards), such that ‖µi,t‖2 ≤ 1
for all i, t. For every available action, the context vector
is then generated as ai,t = µi,t + ξi,t, where the ran-
dom perturbation vectors ξi,t are drawn independently
from some zero-mean distributions D1,t, . . . , DK,t. We
consider perturbations that are (r, δ)-bounded for some
r ≤ 1 according to the following definition [14]:

P[‖ξi,t‖∞ ≤ r for all arms i and rounds t] ≥ 1− δ.
(13)

As outlined above, we are interested in the diversity
of samples collected by the greedy algorithm (defined
below). The main idea is that the observed contexts
should cover all directions in order to enable good esti-
mation of the latent vector θ. Consequently, we make
use of the notion of diversity from [14], which takes
into account that the learner observes rewards for con-
texts that are selected greedily and thus only observes
a conditional distribution of contexts. Specifically, fol-
lowing [14], a distribution D is called (r, λ0)-diverse
with parameters r > 0 and λ0 > 0 if, for a = µ + ξ
with ξ ∼ D and any µ ∈ Rd, it holds for all θ̂ ∈ Rd and
b̂ ∈ R satisfying b̂ ≤ r‖θ̂‖2 that

λmin

(
Eξ∼D

[
aaT

∣∣ θ̂T ξ ≥ b̂]) ≥ λ0. (14)

The overall perturbations are (r, λ0)-diverse if the dis-
tributions Di,t are (r, λ0)-diverse for all i and t.

This diversity condition is the main component in [14]
for proving that the minimum eigenvalue of the em-
pirical covariance matrix λmin(

∑t
τ=1 aIτ ,τa

T
Iτ ,τ

) grows
linearly with t. In Lemma 6 (Appendix B), we demon-
strate that this is the main quantity that has an impact

on the accuracy of the estimator of θ, and in turn, on
the regret bounds in the corrupted setting.

Greedy algorithm. In round t, the greedy algo-
rithm (see Algorithm 2) receives a set of contexts
{a1,t, . . . , ak,t}, and chooses the best action according
to the least squares estimate of θ:

It = arg max
i∈{1,...,K}

〈θ̂t, ai,t〉, (15)

θ̂t = arg min
θ′

t−1∑
τ=1

(〈θ′, aIτ ,τ 〉 − Yτ )2. (16)

Our regret bound for this setup is stated as follows,
and proved in Appendix B.
Theorem 5. Suppose that ‖ai,t‖2 ≤ 1 for all i, t, the
random context perturbations are (r, 1/T )-bounded and
(r, λ0)-diverse with r ≤ 1, the reward noise is 1-sub-
Gaussian, and the attack budget is C ≥ 0. Then with
probability at least 1−δ, the greedy algorithm has regret
bounded by

RT = O

(
1
λ0

(√
dT log

(
dT
δ

)
+ C log T + log

(
dT
δ

))
+
√

log(kδ )

)
. (17)

Under the mild assumptions δ = e−O(dT ) and k
δ =

eO(dT ), this bound simplifies to

RT = O

(
1
λ0

(√
dT log

(
Td
δ

)
+ C log T

))
. (18)

In addition, when C = 0, Theorem 5 reduces to the
result of [14]. The additional 1

λ0
C log T term is essen-

tially optimal when λ0 = Θ(1), since a simple argument
from [24] gives an Ω(C) lower bound (see Appendix C).
In Corollary 1 (Appendix B), we specialize Theorem 5
to the case that the perturbations are Gaussian, i.e.,
every ξi,t is drawn independently from N (0, η2I), and
show that the greedy algorithm has sublinear regret in
the low-η regime.

Theorem 5 indicates that the greedy algorithm can
be robust despite being extremely simple, having no
explicit built-in mechanism for combating robustness,
and having no knowledge C. A caveat to this is the 1

λ0

dependence, indicating that the regret can increase sig-
nificantly when the contexts are not sufficiently diverse.

4 Experiments

In this section, we evaluate the performance of the
algorithms studied in this paper, along with the base-
lines LinUCB [20, 18] and Thompson sampling [1].3

3We use LinUCB as described in [18, Sec. 19.2] with
least-squares regularization parameter λ = 1 and confidence
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Figure 1: Contextual synthetic experiment: (Left) Regret at time T = 3500 as a function of C with η = 0.5;
(Middle Two) Regret as a function of time with η = 0 and η = 0.5; (Right) Performance of Greedy at time
T = 3500 with C = 150 and varying η.

Figure 2: MovieLens experiment: (Left 3) Regret as a function of time with C = 150 for Greedy, LinUCB, and
Thompson sampling; (Right) Regret of all algorithms under the Garcelon et al. attack.

We consider both the robust PE algorithm and the
contextual greedy algorithm, starting with the latter.

4.1 Choices of Attacks

We consider the following attack algorithms, each de-
pending on a target arm atarget and/or a target param-
eter vector θtarget. These are briefly outlined as follows,
with more details in Appendix D:

• Garcelon et al. attack. This attack is a minor
modification of that of [10], leaving pulls from
atarget uncorrupted, while pushing all other re-
wards down to the minimum value.
• Oracle MAB attack. This attack from [13]

pushes the reward of any a 6= atarget to some mar-
gin ε0 below that of atarget, or leaves the reward
unchanged if such a margin is already met.

• Simple θ-based attack. This attack acts in the
same way as that of Garcelon et al., but with
atarget always chosen as arg maxa〈a, θtarget〉. This
is equivalent to that of [10] in the non-contextual
setting, but otherwise may differ due to atarget

varying with time.
• Flip-θ attack. This attack simply flips the re-
ward from 〈θ, a〉 to 〈−θ, a〉.

Note that the terminology “oracle” refers to attacks that
use knowledge of θ, which we assume to be permitted in
this paper (the Flip-θ attack also falls in this category).
We set atarget to be the first arm, which will have
the same effect as choosing any fixed arm (since our
arm feature vectors will be generated in a symmetric
manner). In addition, we let θtarget be uniform on

parameter δ = 0.1, and Thompson sampling [1] uses an
i.i.d. Gaussian prior with variance 0.5.

the unit sphere in the simple θ-based attack, and set
ε0 = 0.01 in the Oracle MAB attack.

4.2 Contextual Setting

Synthetic Experiment. In this experiment, we con-
sider the contextual case with contexts having uni-
form entries and Gaussian perturbations with variance
η2 > 0; see Appendix E for the full details. We con-
sider k = 25 arms, T = 5000 rounds, and attack budget
C = 50. At each time instant, we plot the cumulative
regret averaged over 10 trials, and error bars indicate
one standard deviation. In Appendix E, we provide
analogous plots and discussion when C = 150.

In Figure 1 (Left), we plot the regret of Greedy at
T = 3500 as a function of C with η = 0.5. We observe
a linear increase, which is in agreement with our theory.
Analogous plots for LinUCB, Thompson sampling, and
η ∈ {0.2, 0.5} can be found in Appendix E. The middle
two plots in Figure 1 show the regret as a function of
time with the two most effective attacks, with η = 0
and η = 0.5. We see that the regret curves are still
increasing linearly under the Flip-θ attack by time T =
5000 when η = 0, whereas they are nearly flat when
η = 0.5. While our theory only supports the robustness
of Greedy, these experiments suggest that LinUCB and
Thompson sampling may also enjoy similar robustness
under context diversity. Finally, Figure 1 (Right) plots
the regret of Greedy at T = 3500 as a function of η
when C = 150. We observe that once η moves past a
certain level, the performance remains fairly consistent,
with a general (but not definitive) trend of decreasing
regret. The greatest difference is at η = 0, particularly
when the standard deviation is considered.

MovieLens Experiment. We use the MovieLens-
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Figure 3: Non-contextual synthetic experiment with 10 trials: (Left) Average regret as a function of time; (Middle)
Worst run among 10; (Right) Second-worst run among 10.

100K dataset in a similar manner to [5]; see Appendix E
for details. In each trial, we select a uniformly random
user and treat the 1682 movies as possible contexts. At
each time instant, k = 30 of these movies are chosen
uniformly at random and presented as the contexts.
Hence, a subset of the movie vectors form the contexts,
and a fixed user vector forms θ. We set T = 20000 and
C = 150, and we plot the regret averaged over 10 trials
(each corresponding to a different user).

In Figure 2, we plot the regret as a function of time, for
Greedy, LinUCB, and Thompson sampling. Despite the
lack of explicit context perturbation in this experiment,
we see that the algorithms are again able to recover
from the attacks, suggesting that the various movies in
the data set are sufficiently diverse. On the other hand,
we do not claim the attacks here to be optimal, and it
is possible that stronger attacks may incur linear regret.
In Figure 2 (Right), we plot all three algorithms under
the strongest attack and under no attack. We see that
Greedy has very low regret when there is no attack,
but has slightly higher regret when attacked.

4.3 Non-Contextual Setting

We now turn to experiments for the robust PE algo-
rithm (Algorithm 1), with some minor practical changes
detailed in Appendix E. We use the above synthetic
experimental setup with the context perturbations re-
moved (i.e., η = 0), and with d = 5, k = 50, T = 40000,
and C = 150. For comparison, we also include non-
robust PE, which removes the second term in (8).

For LinUCB, Thompson sampling, and non-robust PE,
we continue to attack right from the start. However,
for robust PE, this is a poor attack strategy, since
the algorithm initially uses a very stringent condition
for elimination. Instead, following insight from the
proof of Theorem 2, we start the attack at the first
epoch for which Ĉh < C. We consider the Flip-θ attack
of Section 4.1, as well as an additional Top-N attack
targeted at eliminating good arms: Whenever any of

the top N remaining arms are pulled, push the reward
to −1. We consider both N = 3 and N = 5. We focus
on the case of unknown C here, and present similar
plots for known C in Appendix E.

In Figure 3 (Left), we see that the average regret of all
algorithms is similar by the end of the time horizon;
however, an inspection of the error bars reveals that
this is not the full story. In particular, the regret of
LinUCB and Thompson sampling vary considerably
depending on whether the attack was successful or
not, whereas robust PE exhibits much lower variation.
To highlight this, we plot the regret from the worst
and second-worst runs out of 10 (as measured at time
T ) in Figure 3 (Middle) and Figure 3 (Right). In
Appendix E, we provide analogous plots in the case
of 40 trials, showing the worst 4-out-of-40 runs and
observing similar behavior to Figure 3.

We see that LinUCB and Thompson sampling visibly
have linear regret, whereas the regret of robust PE flat-
tens out by the end of the time horizon even for these
worst-2-of-10 curves, indicating better high-probability
behavior. In contrast, these results suggest the possibil-
ity of algorithms with improved finite-time performance
guarantees, which was not the focus of our work.

5 Conclusion

We have considered the linear stochastic problem in
the presence of adversarial attacks/corruptions. We
provided novel algorithms in both the standard and
contextual settings that are provably robust against
such attacks. We demonstrated near-optimal regret
bounds in all cases, and to our knowledge, we are
the first to do so in each case. A possible direction
for future work is to consider a setting in which both
rewards and contexts can be altered by the adversary
subject to a limited attack budget.
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A Proofs for Section 2 (Robust Phased Elimination Algorithm)

A.1 Single Epoch Analysis (Known Corruption Budget)

In this section, we consider a single fixed epoch indexed by h. Since the analysis here holds for any epoch, we
omit the subscript (·)h throughout; in particular, θ̂ = θ̂h and Γ = Γh are as given in (6)–(7), A = Ah is the active
set of arms, u(a) = uh(a) is the number of times a is played, and u = uh is the total length of the epoch.

Lemma 1. For any action b ∈ A, the following holds with probability at least 1− 2δ:

|〈b, θ̂ − θ〉| ≤ ‖b‖Γ−1

√
2 log(1

δ ) +
C

mν

√∑
a∈A

u(a)‖b‖2Γ−1 . (19)

Proof. We recall the definition of the set T (a) =
{
s ∈ {1, . . . , u} : As = a

}
, whose cardinality is given by u(a).

We characterize the considered estimator of θ as follows:

θ̂ = Γ−1
u∑
t=1

Atu(At)
−1

∑
s∈T (At)

Ys (20)

= Γ−1
u∑
t=1

Atu(At)
−1
( ∑
s∈T (At)

(
〈θ,As〉+ εs + cs(As)

))
(21)

=
(

Γ−1
u∑
t=1

AtA
T
t θ
)

+
(

Γ−1
u∑
t=1

Atu(At)
−1

∑
s∈T (At)

εs

)

+
(

Γ−1
u∑
t=1

Atu(At)
−1

∑
s∈T (At)

cs(As)
)

(22)

= θ +
(

Γ−1
u∑
t=1

Atεt

)
+
(

Γ−1
u∑
t=1

Atu(At)
−1

∑
s∈T (At)

cs(As)
)
, (23)

where (21) uses the decomposition of Ys into the reward/noise/corruption, (22) uses u(a) = |T (a)| and the fact
that all s ∈ T (At) have As = At, and (23) uses Γ =

∑
a∈A u(a)aaT =

∑u
t=1AtA

T
t .

By (23), for any action b ∈ A (or more generally b ∈ A0), we have

∣∣〈b, θ̂ − θ〉∣∣ ≤ ∣∣∣∣∣bTΓ−1
u∑
t=1

Atεt

∣∣∣∣∣+

∣∣∣∣∣bTΓ−1
u∑
t=1

Atu(At)
−1

∑
s∈T (At)

cs(As)

∣∣∣∣∣. (24)

We proceed by bounding the two terms separately. The second term can be rewritten as follows:∣∣∣∣∣bTΓ−1
u∑
t=1

Atu(At)
−1

∑
s∈T (At)

cs(As)

∣∣∣∣∣ =

∣∣∣∣∣ ∑
a∈A,u(a)6=0

Ca
u(a)

u(a)bTΓ−1a

∣∣∣∣∣, (25)

where we use Ca to denote
∑
s∈T (a) cs(a), i.e., the sum of corruptions for arm a in the epoch, and we keep the

factor u(a)
u(a) for convenience in what follows.
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Next, we have ∣∣∣∣∣ ∑
a∈A,u(a) 6=0

Ca
u(a)

u(a)bTΓ−1a

∣∣∣∣∣ ≤ ∑
a∈A,u(a)6=0

C

u(a)
u(a)

∣∣∣bTΓ−1a
∣∣∣ (26)

≤ C

mν

∑
a∈A

u(a)
∣∣∣bTΓ−1a

∣∣∣ (27)

≤ C

mν

√(∑
a∈A

u(a)
)
bT
∑
a∈A

u(a)Γ−1aaTΓ−1b (28)

=
C

mν

√∑
a∈A

u(a)‖b‖2Γ−1 , (29)

where (26) uses the triangle inequality and |Ca| ≤ C for every a, (27) holds since u(a) ≥ νm by the choice of
u(a), (28) follows by multiplying and dividing by

∑
ā∈A u(ā) and applying E[|Z|] ≤

√
E[Z2] with the distribution

u(a)∑
ā∈A u(ā) , and (29) follows by taking the first Γ−1 term outside the sum and applying the definition of Γ = Γh

from (7).

Since (εt)
u
t=1 are independent and 1-sub-Gaussian, the first term in (24) is bounded via standard concentration

results: From [18, Eq. (20.2)], with probability at least 1− 2δ, we have∣∣∣bTΓ−1
u∑
t=1

Atεt

∣∣∣ ≤ ‖b‖Γ−1

√
2 log(1

δ ). (30)

Combining the bounds obtained in (29) and (30) completes the proof.

Next, we characterize the term ‖b‖2Γ−1 = bTΓ−1b appearing in (19).
Lemma 2. For any arm b ∈ A, it holds that

‖b‖2Γ−1 ≤
2d

m
. (31)

Proof. We have

‖b‖2Γ−1 = bTΓ−1b (32)

= bT
(∑
a∈A

u(a)aaT
)−1

b (33)

= bT
(∑
a∈A
dmmax{ζ(a), ν}eaaT

)−1

b (34)

≤ bT
(∑
a∈A

mζ(a)aaT
)−1

b (35)

≤ 2d

m
, (36)

where:

• (33) and (34) follow from the definitions of Γ = Γh and u(a) = uh(a) in Algorithm 1;

• (35) follows by letting A =
∑
a∈Amζ(a)aaT and B =

∑
a∈Admmax{ζ(a), ν}eaaT and noting that ‖b‖2A−1 ≥

‖b‖2B−1 whenever A−1 � B−1, or equivalently B � A (i.e., inversion reverses Loewner orders).;

• (36) follows from maxa∈Ah ‖a‖2Γ(ζh)−1 ≤ 2d (second step in Algorithm 1) and the definition Γ(ζ) =∑
a∈A ζ(a)aaT .
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Combining the results obtained in Lemmas 1 and 2, we find that with probability at least 1− 2δ, the following
holds for any b ∈ A:

|〈b, θ̂ − θ〉| ≤
√

4d

m
log
(1

δ

)
+

C

mν

√
2du

m
. (37)

In the following lemma, we bound the total epoch length u = uh in terms of the quantity m = mh from Algorithm
1.

Lemma 3. Let m0 = 4d(log log d+ 18), and let ν ∈ (0, 1) be the truncation parameter. Then, the epoch length in
Algorithm 1 is bounded as u ≤ 2m(1 +m0ν).

Proof. We have

u =
∑

a∈A,ζ(a)6=0

dmmax{ζ(a), ν}e (38)

≤
∑

a∈A,ζ(a)6=0

(
mmax{ζ(a), ν}+ 1

)
(39)

≤ 4d(log log d+ 18) +
∑

a∈A,ζ(a)6=0

mmax{ζ(a), ν} (40)

≤ m+
∑

a∈A,ζ(a)6=0

mmax{ζ(a), ν} (41)

≤ 2m
∑

a∈A,ζ(a)6=0

max{ζ(a), ν} (42)

≤ 2m(1 +m0ν), (43)

where (40) uses the support bound in (5), (41) uses m0 = 4d(log log d + 18) and m0 ≤ m, (42) follows since∑
a∈A,ζ(a)6=0 max{ζ(a), ν} ≥

∑
a ζ(a) = 1 for any ν ∈ (0, 1), and (43) uses max{α, β} ≤ α+ β for α, β ≥ 0.

We are now in position to state the main lemma of this section, which follows by combining Lemma 3 with (37),
and provides corruption-tolerant confidence bounds.

Lemma 4. In the given (arbitrary) epoch under consideration, with probability at least 1− 2δ, we have for any
a ∈ A that

|〈a, θ̂ − θ〉| ≤
√

4d

m
log
(1

δ

)
+

C

mν

√
4d(1 + νm0). (44)

In addition, the same holds simultaneously for all a ∈ A with probability at least 1− 2kδ.

Note that we renamed b to a, and the second part follows by a union bound over the k arms.

A.2 Regret Analysis (Known Corruption Budget)

We start by showing that with high probability, Algorithm 1 never eliminates the optimal arm. Recalling that
the optimal arm is a∗ = arg maxa∈A0

〈θ, a〉, we trivially have a∗ ∈ A0. We first show that a∗ ∈ A1 with high
probability.

At the end of epoch 0, the estimate θ̂0 is formed. Letting â = arg maxa∈A0
〈θ̂0, a〉 and conditioning on the second

part of Lemma 4 holding true, we have

〈θ̂0, â− a∗〉 ≤ 〈θ̂, â〉 − 〈θ, â〉+ 〈θ, a∗〉 − 〈θ̂, a∗〉. (45)

= 〈θ̂ − θ, â〉+ 〈θ − θ̂, a∗〉 (46)

≤ 2

√
4d

m0
log
(1

δ

)
+

2C

m0ν

√
4d(1 + νm0), (47)

where (45) holds since a∗ maximizes 〈θ, a〉, while (47) is due to (44).
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Notice that (47) is precisely the condition used in the algorithm to retain arms. It follows that the algorithm will
not eliminate the optimal arm at the end of the first epoch, with probability at least 1− 2kδ. By applying an
induction argument with the same steps as above in subsequent epochs, it follows that if H̃ is any almost-sure
upper bound on the number of epochs H, then with probability at least 1− 2kH̃δ, the algorithm will retain the
optimal arm in every epoch. We claim that we can set H̃ = log2(T ). To see this, note that mh = 2hm0, and
because each epoch’s length uh ≥ mh is hence greater than 2h, the total number of epochs H is deterministically
upper bounded by log2 T .

In the remainder of the proof, we condition on the preceding events that hold with probability at least 1− 2kH̃δ
(we will later rescale δ by 2kH̃ for consistency with the statement of Theorem 1). Hence, the optimal arm is
retained, and the confidence bounds (44) apply in all epochs.

We proceed by analyzing the regret. Fix h ∈ {0, . . . ,H − 1}, and let uh(a) denote the number of times arm a is
played in epoch h. From the definition of regret, we have

RT =

T∑
t=1

(
〈θ, a∗〉 − 〈θ,At〉

)
(48)

=

H−1∑
h=0

∑
a∈Ah

uh(a)
(
〈θ, a∗〉 − 〈θ, a〉

)
(49)

≤ 2u0 +

H−1∑
h=1

∑
a∈Ah

uh(a)
(
〈θ, a∗〉 − 〈θ, a〉

)
(50)

≤ 2u0 +

H−1∑
h=1

∑
a∈Ah

uh(a)
(

4
√

4d
mh−1

log
(

1
δ

)
+ 4C

mh−1ν

√
4d(1 + νm0)

)
(51)

= 2u0 +

H−1∑
h=1

uh

(
4
√

4d
mh−1

log
(

1
δ

)
+ 4C

mh−1ν

√
4d(1 + νm0)

)
(52)

≤ 2u0 +

H−1∑
h=1

2mh(1 + νm0)
(

4
√

4d
mh−1

log
(

1
δ

)
+ 4C

mh−1ν

√
4d(1 + νm0)

)
(53)

= 2u0 +

H−1∑
h=1

4mh

(
4
√

4d
mh−1

log
(

1
δ

)
+ 4Cm0

mh−1

√
8d
)

(54)

= 2u0 +

H−1∑
h=1

(
64
√
dmh−1 log

(
1
δ

)
+ 64Cm0

√
2d
)

(55)

≤ 2u0 + 64c0

√
dT log

(
1
δ

)
+ 64Cm0

√
2d log2 T, (56)

where:

• (49) uses the definition of uh(a);
• (50) uses the fact that the instant regret is at most 2 and the length of the first epoch is u0;
• (51) follows since

〈θ, a∗〉 − 〈θ, a〉 ≤ 〈θ̂h−1, a
∗〉 − 〈θ̂h−1, a〉+ 2

(√
4d

mh−1
log
(

1
δ

)
+ C

mh−1ν

√
4d(1 + νm0)

)
(57)

≤ 4
(√

4d
mh−1

log
(

1
δ

)
+ C

mh−1ν

√
4d(1 + νm0)

)
, (58)

where (57) follows by using (44) to upper and lower bound 〈θ, a∗〉 and 〈θ, a〉 respectively, and (58) follows
from the condition (8) for retaining arms (with Ĉh = C);

• (53) follows from Lemma 3;
• (54) follows by choosing ν = 1

m0
as per Theorem 1;4

4The final term in (53) contains both increasing and decreasing factors with respect to ν, thus not permitting us to set
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• (55) follows by applying mh = 2mh−1 and simplifying;

• (56) holds for some constant c0 > 0 since a sum of exponentially increasing terms is upper bounded by a
constant times the last (and the longest epoch length is trivially at most T ), and we also use H ≤ H̃ = log2(T )
for the second term.

We note that the first term in (56) is insignificant compared to the last term, since u0 ≤ 4m0 by Lemma 3 with
ν = 1

m0
. Since the preceding analysis holds with probability at least 1− 2kH̃δ, we scale δ ← δ

2kH̃
to obtain that

with probability at least 1− δ that

RT = Õ
(√

dT log
(
k
δ

)
+ Cd3/2 log T

)
, (59)

where the O(log H̃) = O(log log T ) term and the O(log log d) term from m0 are absorbed into the Õ(·) notation.

A.3 Unknown Corruption Budget

Recall that for unknown C, the algorithm uses Ĉh = min{
√
T

m0 log2 T
,m0

√
d2H̃−h}, where H̃ = log2 T is a

deterministic upper bound on the number H of epochs. Recall also that we assume C <
√
T

m0 log2 T
, with the case

C ≥
√
T

m0 log2 T
discussed following Theorem 2.

A few observations are in order before we proceed:

• We refer to epochs for which Ĉh ≥ C as safe, as the adversary cannot eliminate the optimal arm in these
epochs. This follows from the analysis of Section A.2, where we showed that if the true C is used in the
criterion for retaining arms, then the optimal arm is retained with high probability (thus, the same follows if
Ĉh ≥ C is used instead).

• Let h′ be the first epoch index for which C ≥ Ĉh. It follows that

C ≥ 2H̃−h
′
m0

√
d, and hence log2

(
C

m0

√
d

)
≥ H̃ − h′. (60)

Thus, the number of remaining epochs H − h′ is at most log2

(
C

m0

√
d

)
.

• In the worst case, the adversary can distribute its budget C among these later epochs with indices h ≥ h′ to
force arms to be eliminated. That is, with Ch denoting the budget used in epoch h (so that

∑H−1
h=0 Ch = C),

it is possible to have Ch > Ĉh in these epochs. We therefore refer to these epochs as unsafe. Note that
since C <

√
T

m0 log2 T
, the adversary does not have enough budget to make any “early” epoch for which

min{
√
T

m0 log2 T
,m0

√
d2H̃−h} =

√
T

m0 log2 T
to be unsafe.

We consider the first unsafe epoch h′, and suppose that the adversary eliminates the optimal arm. Hence, it
holds that Ch′ > Ĉh′ . Our goal will be to show that although the optimal arm gets eliminated, an arm ah′ that
is "almost" as good as the optimal arm is retained.

Because a∗ got eliminated, the rule (8) for retaining arms implies:

max
a∈Ah′

〈θ̂h′ , a− a∗〉 > 2
√

4d
mh′

log
(

1
δ

)
+ 2Ĉh′

mh′ν

√
4d(1 + νm0). (61)

Let ah′ = arg maxa∈Ah′ 〈θ̂h′ , a− a
∗〉, and observe that ah′ is not eliminated, i.e., ah′ ∈ Ah′+1.

We again condition on the second part of Lemma 4, which holds with probability at least 1− 2kH̃δ. This event
implies for every a ∈ Ah′ that

|〈a, θ̂h′ − θ〉| ≤
√

4d
mh′

log( 1
δ ) + C

mh′ν

√
4d(1 + νm0), (62)

ν to an arbitrary small value. The choice ν = 1
m0

is convenient for the analysis, though we do not claim it to be optimal,
nor necessarily the best in practice.
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and note that this holds for both ah′ and a∗, since both ah′ , a∗ ∈ Ah′ (recall that the adversary does not have
enough budget to remove a∗ from Ah′ according to the definition of h′). Combining the two associated bounds,
we obtain

〈θ̂h′ , ah′ − a∗〉 ≤ 〈θ, ah′ − a∗〉+ 2
√

4d
mh′

log( 1
δ ) + 2C

mh′ν

√
4d(1 + νm0), (63)

and combining (61) with (63) gives

〈θ, ah′〉 > 〈θ, a∗〉 − 2
mh′ν

√
4d(1 + νm0)(C − Ĉh′) (64)

≥ 〈θ, a∗〉 − 2C
mh′ν

√
4d(1 + νm0). (65)

By denoting ηh′ := 〈θ, a∗〉 − 〈θ, ah′〉, we can rewrite (65) as

ηh′ <
2C
mh′ν

√
4d(1 + νm0). (66)

Note that ηh′ represents the additional regret (due to the optimal arm elimination) that our algorithm can incur
in epoch h′ + 1 for each arm pull.

In epoch h′ + 1, the optimal arm a∗ is already eliminated in the worst case, and again, the adversary can
potentially eliminate the best remaining arm a∗h′+1 = arg maxa∈Ah′+1

〈θ, a〉 by using Ch′+1 > Ĉh′+1. By repeating
the same arguments as those leading to (66), the additional regret can be written as ηh′+1 = 〈θ, a∗〉 − 〈θ, ah′+1〉,
where ah′+1 = arg maxa∈Ah′+1

〈θ̂h′+1, a− a∗h′+1〉, and it holds that

ηh′+1 < ηh′ + 2C
νmh′+1

√
4d(1 + νm0) (67)

< s 2C
ν

√
4d(1 + νm0)

(
1
mh′

+ 1
mh′+1

)
. (68)

By induction, for each of the remaining epochs, we have:

ηh′+l <
2C
ν

√
4d(1 + νm0)

h′+l∑
i=h′

1
mi

(69)

≤ 2c0C
mh′ν

√
4d(1 + νm0), (70)

where (70) holds for some constant c0, since the sum of exponentially shrinking terms is dominated by the first
one in the sum. Next, by substituting ν = 1

m0
and using uh ≤ 4mh, we deduce that the total additional regret

that we incur is:

H−2∑
h=h′

uh+1ηh ≤
H−2∑
h=h′

4mh+1ηh (71)

≤ 8c0m0C
mh′

√
8d

H−2∑
h=h′

mh+1 (72)

≤ 8c′1m0C
√

8dmH−2

mh′
(73)

= O
(
C2
)
, (74)

where (72) applies (70) with ν = 1
m0

, (73) holds for some constant c′1 (depending on c0) since a sum of exponentially
increasing terms is upper bounded by a constant times the last term, and (74) uses

mH−2

mh′
= 2H−2m0

2h′m0
= 2H−h

′−2 ≤ 2H̃−h
′
≤ 2

log2

(
C

m0

√
d

)
=

C

m0

√
d
, (75)

with the first inequality using (60).
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We now proceed to bound the regret similarly to (48):

RT =

T∑
t=1

(
〈θ, a∗〉 − 〈θ,At〉

)
(76)

=

H−1∑
h=0

∑
a∈Ah

uh(a)
(
〈θ, a∗〉 − 〈θ, a〉

)
(77)

≤ 2u0 +

H−1∑
h=1

∑
a∈Ah

uh(a)
(
〈θ, a∗〉 − 〈θ, a〉

)
(78)

≤ 2u0 +
(H−1∑
h=1

4mh

(
4
√

4d
mh−1

log
(

1
δ

)
+ 2Ĉh−1m0

mh−1

√
8d+ 2Cm0

mh−1

√
8d
))

+

H−2∑
h=h′

uh+1ηh, (79)

where the Ĉh−1 term comes from the condition (8) for retaining arms, and the C term comes from the use of (44)
(this is in contrast to the known C case, in which the former term also uses C).

It remains to bound the terms in (79) separately. We have already shown the bound on the last term (see in
(74)). Next, we show:

H−1∑
h=1

4mh
2Ĉh−1m0

mh−1

√
8d = 16m0

√
8d

H−1∑
h=1

Ĉh−1 (80)

= 16m0

√
8d

H∑
h=1

min{
√
T

m0 log2 T
,m0

√
d2H̃−h} (81)

≤ 16m0

√
8dT

m0
(82)

= O(
√
dT ), (83)

where (80) uses mh = 2mh−1, (81) substitutes the choice of Ĉh, and (82) upper bounds the minimum by the first
term and applies H ≤ H̃ = log2 T .

Similarly, recalling that m0 = 4d(log log d+ 18) and mh = 2mh−1, we have

H−1∑
h=1

4mh
2Cm0

mh−1

√
8d = 16m0

√
8dC log T (84)

= Õ(d3/2C log T ), (85)

and

H−1∑
h=1

4mh

(
4
√

4d
mh−1

log
(

1
δ

))
≤ 64c0

√
dT log

(
1
δ

)
(86)

= O
(√

dT log
(

1
δ

))
, (87)

where (86) holds for some constant c0 > 0 similarly to (56). Then, again replacing δ ← δ
2kH̃

in the same way as
the known C case, the term (87) becomes

Õ
(√

dT log
(
k
δ

))
, (88)

and the associated probability is now 1− δ.

Combining (74), (83), (85) and (88), we arrive at the regret bound:

RT = Õ

(√
dT log

(
k
δ

)
+ d3/2C log T + C2

)
. (89)
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Algorithm 2 Contextual Greedy

Require: Initialize θ̂1 arbitrarily
1: for t = 1, 2, . . . , T do
2: Receive a set of contexts {a1,t, . . . , ak,t}
3: Choose arm It = arg maxi∈{1,...,K}〈θ̂t, ai,t〉
4: Observe: Yt = 〈θ, aIt,t〉+ εt + ct(aIt,t)

5: Update θ̂t+1 ∈ arg minθ′
∑t
τ=1(〈θ′, aIτ ,τ 〉 − Yτ )2 . break ties arbitrarily

6: end for

B Proofs for Section 3 (Contextual Greedy Algorithm)

For reference, a complete description of the greedy algorithm is given in Algorithm 2.

Before proving Theorem 5, we introduce some useful auxiliary results. Our proof builds heavily on that of [14],
whose setup matches ours but does not consider adversarial attacks (i.e., their setup corresponds to the case that
C = 0).
Lemma 5 (Lemma 3.1 [14]). If ‖ai,t‖2 ≤ 1 for all i, t, then for any t0 < T , we have

RT ≤ 2t0 + 2

T∑
t=t0

‖θ − θ̂t‖2. (90)

Proof. We reproduce the proof for the sake of demonstrating the use of the greedy rule in (15). Recall that the
least-squares estimator θ̂t is computed by using the previously observed attacked rewards. We can bound the
regret incurred in the first t0 rounds by the maximum regret value 2. Then, we consider the regret rt incurred at
time t; denoting i∗t = arg maxi∈{1,...,K}〈θ, ai,t〉, we have

rt = 〈θ, ai∗t ,t〉 − 〈θ, aIt,t〉 (91)

=
(
〈θ, ai∗t ,t〉 − 〈θ̂t, ai∗t ,t〉

)
−
(
〈θ, aIt,t〉 − 〈θ̂t, aIt,t〉

)
+
(
〈θ̂t, ai∗t ,t〉 − 〈θ̂t, aIt,t〉

)
(92)

≤
(
〈θ, ai∗t ,t〉 − 〈θ̂t, ai∗t ,t〉

)
−
(
〈θ, aIt,t〉 − 〈θ̂t, aIt,t〉

)
(93)

≤
∣∣〈θ, ai∗t ,t〉 − 〈θ̂t, ai∗t ,t〉∣∣+

∣∣〈θ, aIt,t〉 − 〈θ̂t, aIt,t〉∣∣ (94)

≤ ‖θ − θ̂t‖2‖ai∗t ,t‖2 + ‖θ − θ̂t‖2‖aIt,t‖2 (95)

≤ 2‖θ − θ̂t‖2, (96)

where (93) follows since It is selected greedily, and hence 〈θ̂t, ai∗t ,t〉 − 〈θ̂t, aIt,t〉 ≤ 0.

Lemma 6. For each round t, let Γt =
∑
τ≤t aIτa

T
Iτ
, and suppose that all contexts satisfy ‖ai,t‖2 ≤ 1, the reward

noise is 1-sub-Gaussian, and the attack budget is C ≥ 0. If λmin(Γt) > 0, then with probability at least 1− δ, it
holds that

‖θ − θ̂t‖2 ≤
√

2dt log(td/δ)

λmin(Γt)
+

C

λmin(Γt)
. (97)

Proof. Since λmin(Γt) > 0, the matrix Γt is invertible, and we can use the standard closed-form least squares
solution expression: θ̂t = Γ−1

t

∑
τ≤t aIτ ,τYτ . Decomposing Yτ into the sum of the reward, noise, and adversarial

corruption (similarly to (23)), we obtain

θ̂t = θ + Γ−1
t

∑
τ≤t

aIτ ,τ ετ + Γ−1
t

∑
τ≤t

aIτ ,τ cτ (aIτ ,τ ), (98)

which implies that

‖θ̂t − θ‖2 ≤
∥∥Γ−1

t

∑
τ≤t

aIτ ,τ ετ
∥∥

2
+
∥∥Γ−1

t

∑
τ≤t

aIτ ,τ cτ (aIτ ,τ )
∥∥

2
(99)

≤ 1

λmin(Γt)

(∥∥∑
τ≤t

aIτ ,τ ετ
∥∥

2
+
∥∥∑
τ≤t

aIτ ,τ cτ (aIτ ,τ )
∥∥

2

)
. (100)
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With probability at least 1− δ, the first term is bounded as [14, Lemma A.1]∥∥∑
τ≤t

aIτ ,τ ετ
∥∥

2
≤
√

2dt log(td/δ). (101)

For the second term in (100), we note the following:∥∥∑
τ≤t

aIτ ,τ cτ (aIτ ,τ )
∥∥

2
≤
∑
τ≤t

∥∥aIτ ,τ cτ (aIτ ,τ )
∥∥

2
(102)

≤
∑
τ≤t

|cτ (aIτ ,τ )| ·
∥∥aIτ ,τ∥∥2

(103)

≤
∑
τ≤t

|cτ (aIτ ,τ )| (104)

≤ C. (105)

Combining (100) with (101) and (105) completes the proof.

We are now ready to prove Theorem 5.

Proof of Theorem 5. We follow the steps of the proof of [14, Thm. 3.1]. We start by proving the following

counterpart of [14, Corollary 3.1]: Letting t0 = max
{

4 + 2
√

1
2 log

(
k
δ

)
, 32 log( 4T

δ ), 80 log(2dT/δ)
λ0

}
, for every t ≥ t0,

it holds with probability at least 1− δ that

‖θ − θ̂t‖2 ≤
32
√
d log(2Td/δ)

λ0

√
t

+
16C

λ0t
. (106)

To prove this, we use Lemma 6 with δ
2 in place of δ; (106) will then follow once we show that

λmin(Γt) ≥
tλ0

16
. (107)

This result is shown in [14, Lemma B.1] (making use of the assumption t ≥ t0), and only requires that the random
context perturbations are (r, λ0)-diverse. Thus, it continues to hold in the corrupted setting with C > 0.

Combining (90) and (106), we have with probability at least 1− δ that

RT ≤ 2t0 + 2

T∑
t=t0

(
32
√
d log 2Td

δ

λ0

√
t

+ 16C
λ0t

)
(108)

≤ 2t0 +
128

√
dT log

(
2Td
δ

)
λ0

+ 64C log T
λ0

, (109)

since
∑T
t=1

1√
t
≤ 2
√
T and

∑T
t=1

1
t ≤ 2 log T (with the latter assuming T > 2). Substituting the definition of t0,

it follows that with probability at least 1− δ, we have

RT = O

(
1
λ0

(√
dT log

(
Td
δ

)
+ C log T + log

(
dT
δ

))
+
√

log(kδ )

)
. (110)

We now consider the special case of Gaussian perturbations, i.e., each ξi,t is drawn independently from N (0, η2I)
for some η > 0. We make use of the above results, as well as the ones from [14, Section 3.2], to show that
Algorithm 2 has sublinear regret under small perturbations. This is formally stated in the following corollary.
Corollary 1. Assume the context perturbations ξi,t are drawn independently from N (0, η2I) for all i, t, the
reward noise is 1-sub-Gaussian, and the attack budget of the adversary is C ≥ 0. Then for a fixed number of
arms k and η ≤ O((

√
d log(Tkd/δ))−1), with probability at least 1− δ, the greedy algorithm (Algorithm 2) has

regret bounded by
RT = O

(√
Td
η2 log

(
dT
δ

)3/2
+ C(log T )2

η2

)
. (111)
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Proof. The proof strategy is to invoke Theorem 5, and in particular, since k is assumed to be fixed, its variant
stated in (18).

In Theorem 5, it is assumed that ‖ai,t‖2 ≤ 1. However, the right-hand side of one here was only chosen for
convenience, and (as noted in [14]), the same result holds when ‖ai,t‖2 ≤ R′ for any given R′ ≥ 1 satisfying
R′ = O(1). This change only affects the constants, in particular introducing an (R′)3/2 term [14]; this still behaves
as O(1) since we focus on the case that R′ = O(1).

To invoke such a variant of Theorem 5, we need to condition on an event that ensures ‖ai,t‖2 ≤ R′ for some
constant R′ > 0 for every i, t and the context perturbations need to be (r, 1/T )–bounded and (r, λ0)–diverse for
some λ0 > 0 and r ≤ R′. Next, we show these conditions hold for the case of Gaussian context perturbations.

Towards that end, we start by outlining some results from [14]. First [14, Lemma 3.5] states that when
R̂ ≥ η

√
2 log(2kdT/δ), we have that:

P
[
|ξi,t[j]| ≤ R̂, ∀i ∈ {1, . . . ,K}, t ≤ T, j ∈ {1, . . . , d}

]
≥ 1− δ/2. (112)

In what follows, we set R̂ = 2η
√

2 log(2kdT/δ), and we condition on the event in (113) holding true. Then, [14,
Lemma 3.6] states that when ‖µi,t‖2 ≤ 1, we have

‖ai,t‖2 ≤ 1 +
√
dR̂ := R′ for all i, t, (113)

and the perturbations are (r, 1/T )− bounded for r ≥ η
√

2 log T .

The perturbation distribution conditioned on the event in (112) holding true is a truncated Gaussian supported
on [−R̂, R̂], and satisfies (r, λ0)-diversity when [14]

λ0 = Ω
(η4

r2

)
= Ω

( η2

log T

)
. (114)

Finally, from the definitions of R′ in (113) and R̂ = 2η
√

2 log(2kdT/δ), we have

R′ = 1 +
√
dR̂ ≤ 2 max{1,

√
dR̂} = 2 max{1, 2η

√
2d log(dkT/δ)}, (115)

and we see that to have R′ = O(1), it suffices to have η ≤ O((
√
d log(Tkd/δ))−1).

Finally, we apply the above mentioned variant of Theorem 5 with parameter R′ = O(1). By the union bound, the
events in Theorem 5 and event (113) simultaneously hold with probability at least 1− δ. By substituting the
bound on λ0 from (114) into (18), we arrive at

RT = O
(√

Td
η2 log

(
dT
δ

)3/2
+ C(log T )2

η2

)
. (116)

C Proofs of Lower Bounds

We prove Theorems 3 and 4 in Sections C.3 and C.1 respectively. In Sections C.2 and C.4, we prove two Ω(C)
lower bounds using standard arguments, e.g., see [24].

C.1 Lower Bound for d = k = 2 (Unknown C)

Here we show that for d = 2 dimensions and k = 2 arms, for any algorithm that guarantees RT ≤ R̄(0)
T (say, with

probability 1− δ) for some uncorrupted regret bound R̄(0)
T ≤

T
16 when C = 0, there exists an instance in which

RT = Ω(T ) (again with probability 1− δ) when the attack budget is C = 2R̄
(0)
T . We show that this is true even

with no noise, i.e., εt = 0 for all t.

To prove this, consider an instance with feature vectors a1 =
[

1
2 , 0
]T and a2 =

[
0, 1

4

]T , and parameter vector
θ =

[
1
2 ,

1
2

]T . In this case, pulling a1 incurs zero regret, and pulling a2 incurs regret 1
8 . Hence, by the assumption

RT ≤ R̄(0)
T , we see that a2 is pulled at most 8R̄

(0)
T times when C = 0.
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Now consider a different instance, with feature vectors a1 =
[

1
2 , 0
]T and a2 =

[
0, 3

4

]T , and again θ =
[

1
2 ,

1
2

]T . In
this case, a2 incurs zero regret, and a1 incurs regret 1

8 . Suppose that C = 2R̄
(0)
T , and consider an adversary that

pushes the reward of a2 from 3
8 down to 1

8 whenever it is pulled, at a cost of ct(At) = 1
4 . Since C = 2R̄

(0)
T , the

adversary can afford to do this 8R̄
(0)
T times.

However, as long as the adversary is corrupting, the observed rewards are exactly the same as in the first instance
above, in which we established that a2 is pulled at most 8R̄

(0)
T times. Since we assume that R̄(0)

T ≤
T
16 , it follows

that a1 is pulled at least T − 8R̄
(0)
T ≥

T
2 times, leading to Ω(T ) regret.

C.2 Lower Bound for d = 1 and k = 2 (Known C)

In the case that C is known, we can obtain an Ω(C) lower bound using a simple argument from [24, Sec. 5],
which we reproduce here for completeness. Consider an instance with feature scalars a1 = 1 and a2 = −1. Clearly,
arm 1 is better when θ = 1, but arm 2 is better when θ = −1, and in both cases, the worse arm incurs regret 2.
Consider the case that there is no random noise, and suppose that the adversary shifts every reward to zero until
its budget is depleted, i.e., for bCc rounds. During these rounds, the learner must pull some arm at least bCc/2
times, and for one of the two values of θ ∈ {−1, 1}, a cumulative regret of at least bCc is incurred. Since the two
θ values are indistinguishable during these rounds, we conclude that Ω(C) regret is unavoidable.

C.3 Lower Bound for d = k > 2 (Known C)

Here we generalize the argument of the previous subsection to deduce a stronger lower bound with a joint
dependence on d and C. We consider the case that d = k, with ai being the i-th standard basis vector. Hence,
for any θ ∈ Rd, we have 〈ai, θ〉 = θi. We again consider the noiseless setting.

Consider d different bandit instances, the i-th of which has θ = ai. Hence, in the i-th instance, arm i has reward
1, and the rest have reward zero. In addition, consider an adversary that pushes the reward of the i-th arm down
to zero whenever it is pulled; this can again be done bCc times. Roughly speaking, the learner can do no better
than pull each arm in succession, incurring Ω(Cd) regret.

To make this more precise, note that in the i-th instance, the adversary only runs out of its budget after the i-th
arm is pulled bCc times. However, after

⌊ bCcd
2

⌋
rounds, there must remain at least d

2 arms that have not been
pulled bCc times. When θ = ai for any i corresponding to one of these d

2 arms, the regret incurred is Ω(Cd).

C.4 Lower Bound for Diverse Contexts (Known C)

Finally, we argue that the approach of Section C.2 gives an Ω(C) lower bound on RT even under the assumption
of diverse contexts. Recall that in (14) we consider fixed center points µ1, . . . , µk and assume that these are
perturbed by ξ ∼ D. The following argument holds under any such setup satisfying the mild assumption that,
in each round, a constant positive fraction (e.g., 0.01) of the arms have regret lower bounded by some positive
constant (e.g., 0.01).

We again consider an adversary that pushes the reward to zero (while leaving the random reward noise unchanged)
until the budget is exhausted. Hence, for the first bCc rounds, the learner learns nothing about θ. The preceding
assumption rules out pathological cases such as all arms being identical, and we conclude that constant regret
is incurred per round (with constant probability), for Ω(C) regret total.

D Attack Methods

Recall that we consider the model Yt = 〈θ,At〉+ εt+ ct(At), where εt is random noise and ct(At) is the adversarial
corruption. In our experiments, we consider four attacks, summarized as follows

Garcelon et al. attack. In an attack proposed in [10], the attacker selects a target arm atarget ∈ A that it
wants to trick the learner into thinking is optimal, and operates as follows: (i) If atarget is pulled, leave the reward
unchanged; (ii) If any other arm is pulled, change the reward so that Yt = ε̃t, with ε̃t being artificial random
noise generated by the adversary.
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Since our adversary is assumed to know 〈θ,At〉 and εt individually, we can alter this attack to remove the need for
artificial noise; instead, in case (ii) above, the adversary shifts 〈θ,At〉 down to zero, while leaving εt unchanged.
However, if atarget has a negative reward, then this attack will not make it appear optimal, so we also allow the
adversary to shift down to a more generic value vtarget. In our experiments, we set vtarget = −1, which is the
smallest possible reward.

Of course, the adversary will eventually run out of budget eventually, at which point the attack stops. The same
applies to all of the alternative attacks below.

Oracle MAB attack. Since the adversary has full knowledge of the instance, we can consider the oracle attack
proposed in [13], in which for some target arm atarget, the following is performed: (i) If atarget is pulled, leave the
reward unchanged; (ii) If any other arm a is pulled, shift the reward down by max{0, 〈θ, a〉 − 〈θ, atarget + ε0〉} for
some ε0 > 0. This means that every other arm looks ε0-suboptimal compared to atarget.

Simple θ-based attack. In the contextual setting, fixing a target arm atarget by index (e.g., the first) may
not be the most suitable choice, since the contexts are changing every round. In the setup of Section 3, we are
primarily interested in the case that the perturbations are small, which mitigates this issue. Nevertheless, when
the perturbation variance η becomes large enough, it is likely more effective for the attack to use a different
strategy to choose atarget.

Thus, we propose an attack that tries to make the arm most aligned with some vector θtarget to appear best. To do
this, we simply the above variation of the Garcelon et al. attack, but instead of letting atarget correspond to a fixed
arm index (e.g., the first arm), the attacker updates atarget every round, choosing atarget = arg maxa∈At〈θtarget, a〉.

Flip-θ attack. This attack simply flips the reward from 〈θ, a〉 to 〈−θ, a〉. This attack can be considered as highly
aggressive, potentially using the budget quickly to the rewards appear to be the complete opposite of what they
really are.

E Additional Experimental Details and Results

E.1 Additional Details

Details of contextual experiment. The synthetic experimental setup of Section 4.2 is detailed as follows.
We generate k = 25 “center points” µ1, . . . , µk (one per arm), each having entries drawn i.i.d. from the uniform
distribution on

[
− 1√

d
, 1√

d

]
. The contexts {ai,t}ki=1 at each time t are then created by letting ai,t = µi + ξi,t,

where ξi,t are i.i.d. N
(
0, η

2

d Id
)
for some variance η2 > 0. We fix the true parameter vector as θ =

(
1√
d
, . . . , 1√

d

)
,

and we assume that observations are subject to N
(
0, σ

2

d Id
)
noise with σ2 = 0.05.

Details of MovieLens experiment. The MovieLens experimental setup of Section 4.2 follows [5], and is
detailed as follows. The data for 1682 movies and 943 users takes the form of an incomplete matrix R of ratings,
where Ri,j is the rating of movie i given by the user j. To impute the missing rating values, we apply non-negative
matrix factorization with d = 15 latent factors. This produces a feature vector for each movie Mi ∈ Rd and user
Uj ∈ Rd. We use 10% of the user data for training, in which we fit a Gaussian distribution N (U |µ,Σ). The
reward for movie i is given by 〈Mi, Uj〉 for some fixed j.

Changes to the robust PE algorithm. The parameters in Algorithm 1 (e.g., Ĉh and m0) were chosen
for convenience in the theoretical analysis that ignores constants, but we found that alternative choices are
preferable in practice. Accordingly, we run the algorithm with the following modifications: (i) m0 = d; (ii)
Ĉh = min{

√
T , 2log2 T−h}; (iii) the right-hand side of (8) is replaced by 2

√
4d
mh

log
(

1
δ

)
+ 2Ĉh

mh

√
4d; (iv) We fix

δ = 0.1 and ν = 0.05. Thus, the key changes are removing the m0 terms from Ĉh, and removing the division by ν
in the elimination condition.

E.2 Additional Results

Contextual setting: Budget vs. Regret. In Figure 4, we provide analogous plots to Figure 1 (Left) for all
three algorithms (Greedy, LinUCB, and Thompson sampling) and two choices of η (0.2 and 0.5). In all cases, we
see a similar linear trend to that of Figure 4.
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Figure 4: Contextual synthetic experiments: Regret as a function of C with Greedy (Left), LinUCB (Middle),
and Thompson Sampling (Right), under the perturbation levels η = 0.2 (Top) and η = 0.5 (Bottom).

Non-contextual setting with 40 trials and unknown C. In Figure 5, we provide analogous plots to Figure
3, but with 40 trials instead of 10, and showing the worst 4 out of 40 curves instead of the worst 2 out of 10. We
observe similar findings to those discussed in Section 4.3

Non-contextual setting with known C. In Figure 6, we provide analogous plots to Figure 3 when Algorithm
1 is used with known C, with the following modifications similar to the unknown C case: (i) m0 = d; (ii) the
right-hand side of (8) is replaced by 2

√
4d
mh

log
(

1
δ

)
+ C

mh

√
d; (iii) We fix δ = 0.1 and ν = 0.05. The attack is

chosen to start during the same epoch as the unknown C case. From the regret plots, we observe broadly similar
behavior to the unknown C case, with the exception that the regret is considerably lower when there is no
attack (i.e., C = 0). This is to be expected, since in the known C case, knowing that C = 0 means that one can
confidently eliminate arms much faster.

F Additional Related Works

Adversarial bandits. The most well-known adversarial multi-armed bandit problem is that in which the
rewards are arbitrary, and the goal is to compete with the best fixed arm in hindsight [18, Ch. 11], with the
EXP3 algorithm being a particularly widely-adopted solution. As discussed in [24], in corrupted stochastic bandit
problems, one still seeks to exploit the underlying stochastic structure, but in a more robust manner. Accordingly,
very different solutions are adopted.

A prominent adversarial setting specific to linear bandits is that handled by the EXP2 algorithm [6]. However,
this setting concerns adversarial contexts and non-corrupted rewards, whereas we considercorrupted rewards; as a
result, the two settings and their bounds do not appear to be comparable.

Best of both worlds. The stochastic setting often leads to significantly smaller regret bounds, but at the
expense of potentially restrictive modeling assumptions. Algorithms attaining the best of both worlds (stochastic
and adversarial) [7, 27, 2] are also related to the corruption-tolerant setting, but consider an unbounded adversary
(and a different regret notion) in the adversarial case. Hence, a key distinction is that the adversary’s budget is
“all-or-nothing” rather than being smoothly parametrized by C. See [24] for further discussion.

Model mismatch and misspecification. A distinct but related direction in the linear bandit literature has
been to address robustness to model mismatch and misspecification [11, 17] (see also [18, Sec. 24.4] and [31]). In
[11], the deviations for each arm are fixed and the same every round, whereas in [17] the deviations may depend
on a context vector but not on the learner’s action. Hence, both can be viewed as considering a significantly
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Figure 5: Non-contextual synthetic experiment with 40 trials: (Top-Left) Average regret as a function of time;
(Remaining) Worst 4 runs among 40.

Figure 6: Non-contextual synthetic experiment with 10 trials and known C: (Left) Average regret as a function
of time; (Middle) Worst run among 10; (Right) Second-worst run among 10.

weaker adversary than the present paper. On the other hand, this can lead to stronger regret guarantees, such as
paying essentially no penalty under broad misspecification scenarios [17].

Perhaps closer to our setup, [9, 25] consider a misspecified setting in which the rewards are subject to adversarial
corruptions, and the corruption in each round is bounded by some value ε. Their results lead to a corruption-
dependent term that behaves as O(Tε

√
d) or O(Tε

√
K), and are closely related to our setup with C = Tε.

However, a key difference is that the algorithms used in these works rely on randomized action selection strategies,
and it is assumed that the adversary only knows the distribution of the next action (along with all past actions).
In contrast, we consider a stronger adversary (also considered in certain existing bandit attacks) that can observe
the exact action chosen before making its corruption decision. As a result, randomization is not beneficial in our
setting, so our proposed action selection strategies are deterministic. This distinction is also the reason that we
incur a stronger O(C2) dependence when C is unknown.

Fractional corruption model. In [15], a different corruption model was considered, both in the case of
independent arms and linear rewards. The constraint on the adversary therein is that at any time t, at most ηt
fraction of the observed rewards have been corrupted by the adversary. This is distinct from (and complementary
to) the setting that we consider, in which the adversary can choose where to concentrate its budget. The
algorithms and bounds of [15] are not applicable in our setting.

On the other hand, our algorithms and their regret bounds can be applied to the above-mentioned fractional
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corruption model, or even a more powerful corruption model in which the ηt-fraction condition is only required to
hold for t = T ,5 provided that the adversary’s corruption level is bounded by some value B0 on each round that
it corrupts (as is also assumed in [15]). In particular, such behavior is already captured by our adversary upon
setting C = B0ηT .

G Discussion on Instance-Dependent vs. Instance-Independent Bounds

In the setup of polyhedral domains considered in [21], under the assumption that the separation between the best
and second-best corner point is at least ∆, a regret bound of O

(
Cd2 log T

∆ +
d5 log d log T

δ log T

∆2

)
is proved, assuming a

weaker adversary that knows the player’s randomized action-selection distribution but not the specific action
chosen. To simplify the discussion, we assume d = O(1) and ∆ = Θ(1), and ignore log T factors, thus focusing on
the expression C

∆ + 1
∆2 (which is slightly smaller than the above regret bound).

Consider a “hard” instance in which every suboptimal corner point has a gap of exactly ∆ to the best corner
point. Then, the regret is trivially upper bounded by ∆T , and combining this with the bound above would give
a regret bound of O

(
max

{
C
∆ + 1

∆2 ,∆T
})

or higher. The idea in converting to an instance-independent regret
bound is to maximize over ∆, yielding max∆ max

{
C
∆ + 1

∆2 ,∆T
}
.

In Remark 1, we claimed that an instance-independent regret bound deduced from [21] would scale as RT =
O(T 2/3 +

√
CT ) at best. The two terms here follow by simply substituting two choices of ∆ above: One that

equates C∆ with ∆T above (i.e., ∆ =
√

C
T ), and one that equates 1

∆2 with ∆T (i.e., ∆ = T−1/3). The corresponding

equated terms scale as
√
CT and T 2/3 respectively, which establishes the desired claim.

5This variant is closely related to Huber’s contamination model, in which each round may be adversarially corrupted
independently with probability η.
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