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Abstract

We consider robust optimization problems,
where the goal is to optimize an unknown
objective function against the worst-case re-
alization of an uncertain parameter. For this
setting, we design a novel sample-efficient
algorithm GP-MRO, which sequentially
learns about the unknown objective from
noisy point evaluations. GP-MRO seeks
to discover a robust and randomized mixed
strategy, that maximizes the worst-case
expected objective value. To achieve this,
it combines techniques from online learning
with nonparametric confidence bounds
from Gaussian processes. Our theoretical
results characterize the number of samples
required by GP-MRO to discover a robust
near-optimal mixed strategy for different
GP kernels of interest. We experimen-
tally demonstrate the performance of our
algorithm on synthetic datasets and on
human-assisted trajectory planning tasks for
autonomous vehicles. In our simulations,
we show that robust deterministic strategies
can be overly conservative, while the mixed
strategies found by GP-MRO significantly
improve the overall performance.

1 Introduction

Many real-world problems require taking decisions un-
der uncertainty. Latter can manifest itself in the form
of uncertain parameters, perturbations, or an adver-
sary that can corrupt the decision (Bertsimas et al.,
2011). In such problems, one often seeks to optimize
an objective function while being robust to the worst
possible uncertainty realization. This can be achieved

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

by phrasing such problems in the framework of Ro-
bust Optimization (RO) (Ben-Tal et al., 2009). RO
has found successful applications in various domains
including supply chain management (Bertsimas and
Thiele, 2004), portfolio optimization (Ben-Tal et al.,
2000), influence maximization (He and Kempe, 2016),
and robotics (Jørgensen et al., 2018), to name a few.

In various practical problems, however, the objective
function to be optimized is a-priori unknown, and one
can only learn about it from sequential and noisy point
evaluations. Gaussian process (GP) optimization is an
established framework for model-based sequential op-
timization of such unknown functions (Srinivas et al.,
2010). An array of algorithms that use Bayesian
non-parametric GP models (Rasmussen and Williams,
2006), and balance exploration (learning the func-
tion globally) and exploitation (maximizing the func-
tion) have been developed over the years, e.g., (Srini-
vas et al., 2010; Bogunovic et al., 2016b; Chowdhury
and Gopalan, 2017; Wang and Jegelka, 2017; Frazier,
2018).

In this paper, we study the robust optimization prob-
lem where (i) the objective function is unknown and
(ii) the goal is to be robust against the worst possible
realization of its uncertain parameter. This problem
differs from the classical RO formulation where the
objective function is assumed to be known, and is also
different from the standard GP optimization where
robustness requirement is typically not pursued.

Instead of finding a robust deterministic solution to
this problem (as in (Bogunovic et al., 2018)), we seek
to discover a randomized, i.e., mixed strategy, from a
relatively small number of noisy function evaluations.
The primary motivation for seeking such strategies is
that, in general, they can provide arbitrarily better
worst-case expected performance than deterministic
ones (Krause et al., 2011; Vorobeychik and Li, 2014;
Sinha et al., 2018), i.e., randomization prevents a
potential adversary to know the actual decision until
it is realized. Consequently, we design and use a
novel GP-based sample efficient algorithm to dis-
cover near-optimal mixed strategies. We empirically
demonstrate the effectiveness of the identified robust
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mixed strategies in a trajectory planning task for
autonomous vehicles, where deterministic strategies
are shown to be overly conservative.

Related work. Over the past couple of years,
robust optimization has been extensively studied in
the machine learning community. While most of the
works focus on convex settings (e.g., (Shalev-Shwartz
and Wexler, 2016; Namkoong and Duchi, 2016)), more
recent works also consider general non-convex objec-
tives, e.g., (Chen et al., 2017; Sinha et al., 2017; Staib
et al., 2018). Among those, Chen et al. (2017) provide
robust algorithmic strategies that are shown to be
successful in several learning tasks. The proposed al-
gorithm is based on the idea of simulating a zero-sum
game between a learner and an adversary. Similar
strategies have been also explored in other adversarial
settings, e.g., in submodular optimization (Krause
et al., 2011; Kawase and Sumita, 2019). Our approach
is based on the similar algorithmic idea of Chen et al.
(2017), but unlike this and other works mentioned
above that assume the objective function is perfectly
known (or a maximization oracle is available), it also
requires performing a non-trivial function estimation.

In non-robust GP optimization, various optimization
algorithms (Srinivas et al., 2010; Chowdhury and
Gopalan, 2017; Bogunovic et al., 2016b; Contal et al.,
2013; Wang and Jegelka, 2017) have been proposed to
sequentially optimize the unknown function from noisy
and zeroth-order observations. Similarly to these algo-
rithms, our algorithm relies on a non-parametric GP
model to obtain shrinking confidence bounds around
the unknown objective function. Besides the stan-
dard problem, GP optimization has been considered
in several other practical settings such as contex-
tual (Krause and Ong, 2011), time-varying (Bogunovic
et al., 2016a), safe exploration (Sui et al., 2015), etc.

Recently, a novel algorithm for robust GP optimization
StableOpt has been proposed by Bogunovic et al.
(2018). StableOpt discovers a deterministic solution
that is robust with respect to the worst-case realiza-
tion of the uncertain parameter. This work is closest
to ours, but instead of seeking deterministic solutions,
our focus is on the mixed strategies which are prefer-
able in certain scenarios (see Section 4.2), where deter-
ministic solutions turn out to be overly conservative.
We also note that other forms of robustness have been
studied in GP optimization. For instance, Nogueira
et al. (2016); Oliveira et al. (2019) consider robust-
ness against uncertain inputs (typical in robotics ap-
plications), Sessa et al. (2019) study robust aspects in
multi-agent unknown repeated games, Williams et al.
(2000); Tesch et al. (2011) deal with uncontrolled envi-
ronmental variables, while robustness with respect to
outliers is addressed by Martinez-Cantin et al. (2018).

Contributions. We consider robust optimization of
unknown and generally non-convex objectives.

• We propose an algorithm, GP-MRO, which returns
a mixed strategy, i.e., a probability distribution over
actions, that is robust against the worst-case real-
ization of the uncertain parameter.

• Our theoretical analysis shows the number of
samples required for GP-MRO to discover a
near-optimal robust mixed strategy.

• We propose a variant of GP-MRO which can
effectively trade-off worst-case and average-case
performance.

• Finally, we consider the problem of trajectory
planning in autonomous driving guided by user’s
evaluations. In our experiments, we demonstrate
the effectiveness of the robust mixed strategies
discovered by GP-MRO in comparison to those
identified by existing robust methods.

2 Problem Formulation

Let f : X × Θ → [0, 1] be a reward function over do-
mainD = X×Θ, where X is a continuous and compact
decision set and Θ = {θ1, . . . ,θm} is a finite set of pa-
rameter values. The reward function is unknown, and
we learn about it from sequential noisy point observa-
tions, i.e., so-called bandit feedback. At each time step
t, we choose xt ∈ X and θt ∈ Θ, and observe a noisy
sample yt = f(xt,θt) + ξt, where ξt ∼ N (0, σ2), and
ξt’s are independent over time (our approach allows
also for sub-Gaussian noise).

After T rounds (i.e., T samples), our goal is to report a
strategy for selecting points in X that is robust against
the worst-possible parameter value from Θ. We as-
sume that during the optimization phase (i.e., train-
ing/simulation) one can choose θ, while later, during
the implementation (i.e., test) phase, the parameter θ
becomes uncontrollable. Hence, it is important to de-
sign a robust strategy for selecting the first parameter.

Optimization goal. Let ∆(X ) denote the set of
all probability distributions, or mixed strategies on X .
Our goal is to find a distribution in ∆(X ) that achieves
high reward in the worst-case over θ ∈ Θ. The max-
imin optimal value is given by:

τ∗ = max
P∈∆(X )

min
θ∈Θ

Ex∼P [f(x,θ)], (1)

and we seek to report a robust solution P(T ) ∈ ∆(X )
that for some specified accuracy value ε ≥ 0 achieves

min
θ∈Θ

Ex∼P(T ) [f(x,θ)] ≥ τ∗ − ε. (2)

Besides achieving (2), our goal is also to minimize the
total number of required samples T .

We note that our optimization goal is different
from the one of computing deterministic (pure
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strategy) solution x ∈ X and competing against
τ = maxx∈X minθ∈Θ f(x,θ) as considered in (Bo-
gunovic et al., 2018). Our goal is to discover a
randomized strategy and compete against τ∗ ≥ τ ,
which can be arbitrarily larger than τ . Hence,
mixed strategies considered in this work can provide
arbitrarily better expected performance than such
deterministic ones. Conceptually, randomization
allows the decisions to be less predictable, and is a key
feature necessary in many applications including se-
curity games (Sinha et al., 2018), adversarial learning
(Vorobeychik and Li, 2014) and sensing (Krause et al.,
2011). This is also the case in the autonomous driving
scenario considered in Section 4.2, where we show that
deterministic strategies can be overly conservative.
Finally, we also note that the same objective (1) is
considered in (Chen et al., 2017), in the case of known
reward functions fi(·) := f(·,θi), and i ∈ {1, . . . ,m}.

Our Model. We assume that the unknown objec-
tive f is fixed and belongs to a Reproducing Kernel
Hilbert Space (RKHS) Hk(D) corresponding to a pos-
itive semi-definite kernel function k(·, ·) : D×D → R.
Furthermore, we require f to have a bounded RKHS
norm, i.e., ‖f‖k =

√
〈f, f〉k ≤ B where ‖·‖k stands for

the RKHS norm and B is a known positive constant.
The RKHS norm represents a measure of smoothness
of f as measured by the corresponding kernel. We note
that these are the standard assumptions used in GP
optimization (see, e.g., (Srinivas et al., 2010; Chowd-
hury and Gopalan, 2017; Bogunovic et al., 2018)).

For the kernel function, we assume k
(
(x,θ), (x,θ)

)
≤

1 for all (x,θ) ∈ D, which is without loss of generality
if appropriate re-scaling is applied. Our setup also
allows for composite kernels that can be constructed
by using individual kernels k1 : X × X → R and
k2 : Θ×Θ→ R, to obtain, for example, additive kernel
k
(
(x,θ), (x′,θ′)

)
:= k1(x,x′) + k2(θ,θ′) or product

kernel k
(
(x,θ), (x′,θ′)

)
:= k1(x,x′) · k2(θ,θ′). Popu-

larly used kernels are linear, squared exponential (SE)
and Matérn:

kLin(x,x′) = xTx′,

kSE(x,x′) = exp
(
− 1

2l2 ‖x− x
′‖2
)
, and

kMat(x,x
′) = 21−ν

Γ(ν)

(√
2ν‖x−x′‖

l

)
Jν

(√
2ν‖x−x′‖

l

)
,

where l is the length-scale parameter and ν > 0
is a parameter that determines the smoothness
(Rasmussen and Williams, 2006).

Under such assumptions, the uncertainty over
f is naturally modeled as a Gaussian process
GP(0, k((x,θ), (x′,θ′))). Further on, a Gaussian like-
lihood model for the observations can be used assum-
ing the noise ξt = yt − f(xt,θt) is drawn, indepen-

dently across t, from N (0, λ). Here, λ denotes a free
hyper-parameter that may differ from the true noise
variance σ2. With this model in place, conditioned on
the history of inputs {(x1,θ1), . . . , (xt,θt)} and their
noisy observations {y1, . . . , yt}, the posterior distribu-
tion under this prior is also Gaussian with the closed
form posterior mean and variance:

µt(x,θ) = kt(x,θ)T
(
Kt + λIt

)−1
yt, (3)

σ2
t (x,θ) = k((x,θ), (x,θ))

− kt(x,θ)T
(
Kt + λIt

)−1
kt(x,θ), (4)

s.t. kt(x,θ) =
[
k
(
(xj ,θj), (x,θ)

)]t
j=1

, and Kt =[
k
(
(xj ,θj), (xj′ ,θj′)

)]
j,j′

is the kernel matrix. As de-

scribed bellow, we make use of this model in our algo-
rithm to sequentially learn about the unknown objec-
tive function.

3 Proposed Algorithm and Theory

Our algorithm, GP-MRO, is shown in Algorithm 1. It
can be interpreted as a zero-sum game between a sim-
ulated adversary and a learner. The adversary plays
actions from the set Θ, while the learner plays actions
from X . Because the true reward function f(·, ·) is un-
known, the algorithm maintains and makes use of the
optimistic upper confidence bound ucbt(·, ·) (defined
below) of the unknown reward function. We define
the confidence bounds as follows:

ucbt(x,θ) := µt(x,θ) + βt+1σt(x,θ) (5)

lcbt(x,θ) := µt(x,θ)− βt+1σt(x,θ), (6)

where βt is the confidence parameter that we set ac-
cording to Lemma 1 bellow. We also define their trun-
cated versions:

ucbt(x,θ) := min{ucbt(x,θ), 1} (7)

lcbt(x,θ) := max{lcbt(x,θ), 0}, (8)

which we use in our algorithm. At every round t, GP-
MRO simulates the adversary by selecting a distribu-
tion over the m values of θ, i.e., wt ∈ {w ∈ [0, 1]m :∑m
i=1w[i] = 1}, where wt[i] denotes the probability

of selecting θi. Subsequently, the learner best responds
by selecting xt based on the knowledge of wt. After
T iterations, GP-MRO returns the uniform distribu-
tion over {x1, . . . ,xT }, denoted with U (T ). Next, we
explain how wt and xt are chosen in Algorithm 1.

The multiplicative weight updates (MWU) rule (Fre-
und and Schapire, 1997) is used to select wt at every
round t. We note that this algorithm is an online learn-
ing no-regret algorithm that requires full-information
feedback at every round, i.e., observations that corre-
spond to every pair {(xt,θi)}mi=1. This is not possible
in our setting where the learner only receives a single
noisy observation that corresponds to the chosen pair
(xt,θt). To cope with this, we make use of the up-
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per confidence bound functions to effectively emulate
the full information feedback.1 Hence, the MWU rule
used in our algorithm is given by:

wt[i] ∝ exp
{
− ηT

t−1∑
j=1

ucbj−1(xj ,θi)
}
,

where ηT is the learning rate parameter that we set in
Theorem 2 bellow. Another equivalent way of writing
this rule is via the following recursive update:

wt[i] =
wt−1[i] · exp

(
− ηT · ucbt−1(xt−1,θi)

)∑m
j=1wt−1[j] · exp(−ηT · ucbt−1(xt−1,θj))

.

The learner then observes wt, and plays the best re-
sponse xt that is obtained by using the upper confi-
dence bound instead of the true unknown function:

xt = arg max
x∈X

( m∑
i=1

wt[i] · ucbt−1(x,θi)

)
. (9)

Finally, the unknown function is queried at (xt,θt),
where θt is selected as the parameter value that has
the highest uncertainty for the selected xt, i.e.,

θt ∈ arg max
θ∈Θ

σt−1(xt,θ). (10)

The observed data (xt,θt, yt) is then used to update
the model via (3) and (4).

3.1 Main result

To characterize our regret bounds, we make use of a
suitable measure of complexity of the function class,
the so-called maximum information gain. It has been
introduced by Srinivas et al. (2010), and subsequently
used in many different works on Bayesian (GP) opti-
mization. At time t, it is defined as

γt = max
{(x1,θ1),...,(xt,θt)}

1

2
log det(It + λ−1Kt), (11)

and is used to measure the reduction in uncertainty
about f after receiving t noisy observations that cor-
respond to {(x1,θ1), . . . , (xt,θt)}. In the case D ⊂
Rd, this kernel-dependent quantity is sublinear in t
for various kernel functions, e.g., O((log t)d+1) for
squared exponential and O(t(d+1)d/((d+1)d+2ν) log t)
for the Matérn kernel with ν > 1 (Srinivas et al., 2010).

We use the following well-known result in GP op-
timization (Srinivas et al., 2010; Chowdhury and
Gopalan, 2017), that allows for construction of statis-
tical confidence bounds around the unknown function.

Lemma 1. Let f ∈ Hk(D) with ‖f‖k ≤ B, and con-
sider the sampling model

yt = f(xt,θt) + ξt, where ξt ∼ N (0, σ2).

If the confidence parameter is set to

βt = B + σλ−1/2
√

2(γt−1 + ln(1/δ)), (12)

1A similar idea has recently been used by Sessa et al.
(2019) in the context of multi-agent repeated games.

Algorithm 1 GP-MRO

Input: Sets Θ, X , kernel k, parameters ηT , {βt}t≥1

1: for t = 1, 2, . . . , T do
2: For every i ∈ {1, . . . ,m} set

wt[i] ∝ exp
{
− ηT

t−1∑
j=1

ucbj−1(xj ,θi)
}

3: Set

xt ← arg max
x∈X

m∑
i=1

wt[i] · ucbt−1(x,θi)

4: θt ← arg maxθ∈Θ σt−1(xt,θi)
5: Observe yt = f(xt,θt) + ξt
6: Update µt(·, ·) and σt(·, ·) according to

(3) and (4) by including {(xt,θt, yt)}
7: end for

Output: Uniform distr. U (T ) over {x1, . . . ,xT }.

the following holds for every (x,θ) ∈ D and t ≥ 1,
with probability at least 1− δ:

|µt−1(x,θ)− f(x,θ)| ≤ βtσt−1(x,θ), (13)

where µt−1(·, ·) and σt−1(·, ·) are given in (3) and (4)
with λ > 0.

Given the definitions (7)-(8), and by conditioning on
the event (13) in Lemma 1 holding true we have:

1 ≥ ucbt(x,θ) ≥ f(x,θ) ≥ lcbt(x,θ) ≥ 0, (14)

for every pair (x,θ) ∈ D and t ≥ 1.

Next, we state our main theorem in which we bound
the performance of GP-MRO. All the proofs from this
section are provided in the supplementary material.

Theorem 2. Fix B > 0, ε > 0, δ ∈ (0, 1), m ∈ Z+,
λ ≥ 1, and suppose the following holds

T ≥ 1

ε2

(
log(m)

2
+ βT

√
32λγT log(m) + 16β2

TλγT

)
,

for some T ∈ Z+. For any f : D → [0, 1], such that
f ∈ Hk(D) and ‖f‖k ≤ B, GP-MRO with βt set as

in Lemma 1 and ηT =
√

8 logm
T achieves

min
θ∈Θ

Ex∼U(T ) [f(x,θ)] ≥ max
P∈∆(X )

min
θ∈Θ

Ex∼P [f(x,θ)]− ε,

after T rounds with probability at least 1 − δ, where
U (T ) is the distribution returned by GP-MRO.

Our analysis is based on the regret bounding tech-
niques for zero-sum games similarly to (Chen et al.,
2017) (we bound the rate of convergence to an equilib-
rium of the game simulated by GP-MRO), but with
additional non-trivial challenges to characterize the ex-
cess regret due to the fact that f is unknown. The re-
sult in this theorem holds for general kernels and it can
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be made more specific by substituting the bounds on
γT for different kernels. For example, for D ⊂ Rd and
the widely used squared exponential kernel, we obtain
T = O∗

(
1
ε2

(
log(m) + (log 1

ε )d
√

log(m) + (log 1
ε )2d

))
,

for constant λ, σ,B, d,m, where O∗(·) is used to hide
dimension-independent log factors. In the same set-
ting, StableOpt (Bogunovic et al., 2018) requires
T = O∗

(
1
ε2

(
log 1

ε )2d
)

samples to discover a determin-
istic maximin strategy that is near-optimal with re-
spect to a generally weaker benchmark. Finally, in
comparison to the result of Chen et al. (2017) where

T = O
( log(m)

ε2

)
and f is assumed to be known, our

bound characterizes an additional number of samples
required for estimating the unknown RKHS function.

3.1.1 Trading Off Worst-Case and
Average-Case Performance

In many scenarios, one might care about the perfor-
mance of the reported distribution in the worst-case
while also ensuring a good performance on “average”.
A natural problem to consider is to trade off these two
quantities by using the following objective:

W (P) := (1− χ) · E
θ∼Q
x∼P

[f(x,θ)] + χ ·min
θ∈Θ

E
x∼P

[f(x,θ)] ,

for some fixed distribution Q ∈ ∆(Θ) (e.g., the uni-
form distribution) and trade-off parameter χ ∈ (0, 1].
Note that by setting χ = 1, we recover the worst-case
objective. Hence, our goal is to output P(T ) ∈ ∆(X )
after T rounds, such that for some accuracy ε > 0

W (P(T )) ≥W (P∗)− ε, (15)

where P∗ ∈ arg maxP∈∆(X )W (P).

Extending our algorithm to this case amounts to modi-
fying the best response rule (Line 3 of Algorithm 1) as:

xt = arg max
x∈X

[
(1− χ) · E

θ∼Q
[ucbt−1(x,θ)]

+ χ ·
m∑
i=1

wt[i] · ucbt−1(x,θi)
]
. (16)

The theoretical guarantees of GP-MRO in this
setting with the best-response rule as given in (16)
are provided in the following corollary.

Corollary 3. Let Q be a fixed distribution in ∆(Θ)
and let χ ∈ (0, 1] be a trade-off parameter. Under the
setup of Theorem 2, and when the following holds

T ≥ 1

ε2

(
χ2 log(m)

2 + χβT
√

32λγT log(m) + 16β2
TλγT

)
,

for some T ∈ Z+, GP-MRO with best-response rule
as in (16), achieves

W (U (T )) ≥W (P∗)− ε,
after T rounds with probability at least 1 − δ, where
U (T ) is the returned uniform distribution over the
queried points {x1, . . . ,xT }.

The proof closely follows the one of Theorem 2. When
χ = 1, we recover Theorem 2, while the performance
clearly improves for smaller values of χ, i.e., when
χ ∈ (0, 1). We also note that for χ = 0, our algorithm
solves the stochastic optimization problem, and
achieves the standard regret bound (as in (Srinivas
et al., 2010)) which is known to be nearly optimal for
various kernels (see (Scarlett et al., 2017)).

4 Experiments

In this section, we evaluate the performance of GP-
MRO on synthetic benchmarks and demonstrate the
applicability of GP-MRO in planning safe trajectories
for autonomous vehicles guided by user’s preferences.

4.1 Synthetic Experiments

For a function f : X × Θ → R, we compute the per-
formance of a mixed strategy P(T ) ∈ ∆(X ) as:

min
θ∈Θ

Ex∼P(T )

[
f(x,θ)

]
. (17)

In case the strategy is deterministic xT ∈ X , the per-
formance is computed by considering the Dirac distri-
bution centered at xT . We compare the performance
of GP-MRO with the following baselines:

• StableOpt (Bogunovic et al., 2018) searches for
the deterministic max-min point.

• GP-UCB (Srinivas et al., 2010) seeks for a non-
robust global optimum and selects (xt,θt) =
arg max(x,θ)∈X×Θ ucbt−1(x,θ) at every t. After T
iterations, we consider xT to be the returned point.

• RandMaxMin selects the point reported by
StableOpt or GP-UCB with equal probability
at every round, and returns a uniform distribution
over these points.

We set βT = 2.0 for each of the above algorithms (we
found the theoretical choice to be overly conservative,
as also noted in previous works (Srinivas et al., 2010;
Bogunovic et al., 2018)), while ηT is set according to
Theorem 2. As an idealized benchmark, we also test
against (Chen et al., 2017, Algorithm 1) (which we
name via the authors’ surnames as CLSS) which as-
sumes oracle access to f and thus upper bounds the
achievable performance.

In the first experiment, we let X ,Θ ⊂ [−1, 1] with
|X | = 100, and |Θ| = 30, and sample a random func-
tion f : X × Θ → R from a GP(0, k) with kernel
k = kLin · kSE. Moreover, we run the different base-
lines with the true prior GP(0, k) and noise standard
deviation σ = 1.0.

In Figure 1a, we show f as well as the strategies
returned by StableOpt and GP-MRO after T = 40
iterations. StableOpt converges to the max-min
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(a) Selected points (b) Performance comparison

Figure 1: (a) Strategies returned by StableOpt and GP-MRO after T = 40 iterations. (b) Comparison of the perfor-
mance of the considered baselines, computed as in (17). The proposed GP-MRO algorithm outperforms all the baselines.
CLSS(Chen et al., 2017, Algorithm 1) assumes oracle access to f and upper bounds the achievable results.

point of f , while the distribution returned by GP-
MRO assigns most of the probability mass to points
x = +1.0 and x = −1.0. As shown in Figure 1b, this
leads to a higher performance compared to all the
considered baselines.

Next, we consider the synthetic function gpoly : R2 →
R from (Bertsimas et al., 2010), and the robust opti-
mization task from (Bogunovic et al., 2018). The goal
is to select points x = (x1, x2) that maximize gpoly

subject to the worst-case perturbation θ ∈ Θ. We
map such problem to our setting by defining f(x,θ) =
gpoly(x − θ). The decision space X consists of a uni-
formly spaced grid of 10′000 points, while the set of
perturbations Θ is obtained by drawing 100 random
points from the unit ball centered at the origin.

We set noise standard deviation σ = 1.0 and run
all the algorithms using Matérn kernel kMat for
T = 200 iterations (kernel hyperparameters are found
via maximum-likelihood method). In Figure 2a, we
plot the function gpoly as well as the support of the
strategies returned by StableOpt (in black) and
GP-MRO (in cyan). For GP-MRO we plot only
points selected with probability mass greater than
0.01. StableOpt is able to discover the max-min
point of gpoly, while GP-MRO randomizes between
points in the max-min region and points close to the
global optimum. This leads to a higher performance
compared to other baselines, as shown in Figure 2b.

4.2 Human-assisted trajectory planning for
autonomous vehicles

We study the problem of planning safe trajectories for
an Autonomous Vehicle (AV) driving on roads shared
with human-driven vehicles (HVs). We consider the
situation depicted in Figure 3a, where the AV (in yel-
low) is approaching, with a speed of 20 m/s, a HV (in
red) driving at a constant speed of 10 m/s. The inten-

tions of the HV are uncertain and this should be taken
into account when planning the AV’s trajectory.

In the context of autonomous driving and AV-HV
interactions, deterministic strategies would make
AVs’ actions predictable, hence giving a significant
advantage to HVs. We observe this fact in our
simulations, where such strategies tend to be overly
conservative and prevent the AV from completing
the overtake manoeuvre. Similarly, we expect this
to occur in many other challenging scenarios such as
intersections (Liu et al., 2018), or when merging into
dense lanes (Bouton et al., 2019). Instead, we model
such problem according to Section 2 and seek for
robust mixed strategies for the AV. This is in contrast
with previous works (e.g., (Fisac et al., 2019; Sadigh
et al., 2016)) where deterministic strategies are found,
assuming a specific behavioral model for the HV.

Further on, our goal is to plan trajectories for the AV
which best reflect typical human driving preferences
(e.g., driving styles, security measures, and safe be-
haviors that the AV should follow). For instance, in
the specific situation of Figure 3a, a good trajectory
for the AV should depend on the importance that hu-
mans give to overtaking rather than breaking behind
the HV. We encode such driving preferences with an
unknown scoring function. We assume we can learn
such function by sequential evaluations obtained in-
teracting with a user who assists our planning phase.

Computing such mixed strategies requires enough
computation and relies on sequential interactions with
the user. Hence, after illustrating our approach, we
propose an offline scheme to pre-compute a control
policy for the AV using GP-MRO.

Decision sets. A strategy for the AV consists of se-
lecting a steering angle x1 ∈ [− π

60 ,
π
60 ], and an accel-

eration x2 ∈ [−10, 1]. Once chosen, both are assumed
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(a) Selected points (b) Performance comparison

Figure 2: (a) Supports of the strategies returned by StableOpt (in black) and GP-MRO (in cyan) after T = 200
iterations. StableOpt reports a deterministic strategy, while GP-MRO returns a randomized strategy. (b) Performance
of the different baselines, computed as in (17). The mixed strategy returned by GP-MRO outperforms all the baselines.
The CLSS algorithm has oracle access to f and upper bounds the achievable performance.

to be constant for the horizon of 8 s. Hence, we let X
be the set of points x = (x1, x2). Similarly, we assume
the HV travels at a constant speed and can choose a
steering angle θ ∈ Θ = [− π

30 ,
π
30 ]. We discretize both

X and Θ using uniform grids of 121 and 11 points, re-
spectively. Car trajectories (depicted in Figure 3a) are
computed using the commonly used discrete-time bicy-
cle model (Polack et al., 2017) with time steps of 0.04 s.

Optimization goal. We let the scoring function
f : X × Θ → [0, 1] reflect the humans’ driving prefer-
ences for the AV. As discussed later, f measures how
rewarding is for the AV to select a possible x ∈ X when
the HV decides to steer with angle θ ∈ Θ. Our goal
is to compute a robust mixed strategy which solves
the problem in (1). More generally, according to Sec-
tion 3.1.1, we can incorporate priors Q ∈ ∆(Θ) on
HV’s behaviors and find strategies that can trade-off
worst-case and average-case performance, for a trade-
off parameter χ ∈ (0, 1].

Scoring function. We assume that f is initially
unknown but can be learned by iteratively query-
ing the user. Querying f at a given point (x,θ)
consists of: 1) Forward simulating the AV’s and
HV’s trajectories corresponding to x and θ and 2)
Presenting the outcome of such simulation to the user
who assigns a score to the considered trajectories. In
this experiment, we assume such score is determined
by a feature vector z = [z1, z2, z3] ∈ R3 that can
be extracted from the simulated trajectories. Such
vector consists of: longitudinal distance travelled
by the AV (z1), AV’s maximum absolute lateral
position (z2), and the minimum distance between
the AV and the human-driven car (z3). We use
a model of the unknown f of the following form:
fp(z1)+fr(z2)+feb(z3), where fp rewards progress, fr

penalizes exiting the road limits, while feb penalizes

(a) Initial plausible trajectories

(b) Computed strategies, χ = 1

(c) Computed strategies, χ = 0.8

Figure 3: (a) Initial plausible trajectories of the AV (yel-
low) and the HV (red). In (b) and (c), the robust determin-
istic strategy (in dotted light-green) corresponds to break-

ing and not overtaking. The mixed strategy U (T ) found by
GP-MRO is represented by the blue trajectories (intensi-
ties proportional to their probabilities) and depends on the
trade-off parameter χ.

the AV if it gets too close to the human-driven car
and therefore needs to activate emergency breaking.
In future work, we plan to replace our model and test
our approach with scores coming from real users.

4.3 Illustration of the mixed strategies
computed by GP-MRO

We consider the configuration in Figure 3a and com-
pute a mixed strategy for the AV running GP-MRO
for T = 100 iterations. We set trade-off parameter
χ = 1, βT = 0.5, and ηT = 0.5. To learn f , we
fit a GP with kernel function k(z, z′) = k1

Mat(z1, z
′
1) +

k2
Mat(z2, z

′
2)+k3

Mat(z3, z
′
3) where the feature vector z is

computed as explained above. In Figure 3b, we depict
(in blue) the support of the mixed strategy U (T ) where
the color intensity of a trajectory is proportional to its
probability. Additionally, we show (in dotted light-
green) the trajectory corresponding to the robust de-
terministic strategy xr ∈ arg maxx∈X minθ∈Θ f(x,θ).
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Figure 4: Closed-loop simulation of
the AV (yellow) and human-driven
car (red). At every iteration, the
AV implements (a) the randomized
policy found by GP-MRO or (b)
the deterministic max-min strategy.
The human-driven car follows the
noisy rational Boltzmann policy (18).
The robust deterministic strategies
are overly conservative, while GP-
MRO algorithm allows the AV to
safely overtake.

(a) GP-MRO (b) Max-min deterministic strategy

The strategy U (T ) randomizes between an overtake
from the left or the right side. Instead, xr amounts
to breaking and thus never overtaking.

Our next goal is to find a strategy for the AV which
can trade off the worst-case with average-case perfor-
mance. Let us assume that, with probability 0.2, the
HV doesn’t realize the presence of the AV and thus has
no intention to steer. In this case, we can seek for the
optimal strategy for the AV by setting χ = 0.8 and let-
ting Q ∈ ∆(Θ) be a Dirac distribution corresponding
to the HV proceeding straight. In Figure 3c we depict
the strategy returned by GP-MRO, together with the
trajectory xr ∈ arg maxx∈X (1−χ)·Eθ∼Q

[
f(x,θ)

]
+χ·

minθ∈Θ f(x,θ). In this case, U (T ) favors an overtake
from the right, while xr still leads to no overtaking.

4.4 Closed-loop simulations

We propose the following offline procedure to pre-
compute a control policy for the AV. We consider a
finite set of ∼ 8′000 possible scenarios s ∈ S ⊂ R5,
each describing the initial and relative positions and
velocities of the two cars. We compute a mixed strat-
egy U (T )(s) for each scenario s ∈ S using GP-MRO
with χ = 1. Moreover, to make our approach more
tractable, we query f at chosen points (xt,θt) (Line
5 in Algorithm 1) only if σt−1(xt,θt) is greater than
0.005. By doing so, we end up with a policy mapping
scenarios s ∈ S to distributions U (T )(s) ∈ ∆(X ) after
a total number of 136 queries of the unknown function.

We evaluate the policy online, in a receding-horizon
fashion: Starting from given initial positions and ve-
locities, every 2 s we map the cars’ positions and ve-
locities to the closest s ∈ S (using a nearest-neighbour
tree-based algorithm) and let the AV sample its tra-
jectory from U (T )(s). For the behavior of the HV we
implement a noisy rational Boltzmann policy (as in
(Fisac et al., 2019)) where, in a given scenario s ∈ S,
θ ∈ Θ is sampled with probability

P[θ = θi | s ] ∝ exp
(
Ex∼U(T )(s) fH(θi,x)

)
. (18)

The function fH rewards progress for the HV and pe-

GP-MRO
Deterministic

max-min
# of overtakes 408/1000 0/1000
avg. final pos. AV 169.4 m 123.1 m
avg. final pos. human 139.8 m 139.9 m

Table 1: Number of overtakes and cars’ average final
positions out of 1000 closed-loop simulations of 10 s.

nalizes exiting the road or getting too close to the AV,
the same way as f does for the AV.

In Figure 4, we plot several snapshots of a closed-loop
simulation of 10 s where the AV samples trajectories
from the pre-computed policy (a), and where the AV
chooses the max-min strategy xr at every iteration (b).
As can be seen from Figure 4, the proposed approach
allows the AV to safely overtake, while the robust de-
terministic strategy is too conservative and forces the
AV to break behind the HV. We repeat the closed-
loop simulation for 1′000 times (for fixed initial posi-
tions and velocities of the two cars). As reported in
Table 1, the deterministic strategy is non-overtaking
and the AV reaches an average final longitudinal po-
sitions of 123.1 m. Instead, using the pre-computed
randomized policy the AV successfully overtakes the
human-driven car in 408 cases (in the remaining cases
it breaks behind the HV), reaching an average final
position of 169.4 m.

5 Conclusion

We have studied a robust optimization problem in
which the objective function is unknown and depends
on an uncertain parameter. For this problem, we
have proposed a novel sample-efficient algorithm GP-
MRO, which can discover a near-optimal random-
ized and robust strategy. We have established rigor-
ous theoretical guarantees and designed a variant of
GP-MRO that effectively trades off worst-case and
average-case performance. In synthetic experiments
and trajectory planning tasks, we have showed that
our proposed algorithm significantly outperforms ex-
isting baselines.



Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause

Acknowledgments

This work was gratefully supported by the Swiss Na-
tional Science Foundation, under the grant SNSF
200021 172781, by the European Union’s ERC grant
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A Proof of Theorem 2

Proof. In this proof, we condition on the event in Lemma 1 holding true, meaning that ucbt and lcbt provide
valid confidence bounds as per (13). As stated in the lemma, this holds with probability at least 1− δ.

Our main goal in this proof is to upper bound the difference:

max
P∈∆(X )

min
θ∈Θ

Ex∼P [f(x,θ)]−min
θ∈Θ

1

T

T∑
t=1

f(xt,θ). (19)

To do so, we provide upper and lower bounds of the first and second terms, respectively, and then we upper
bound their difference.

First, we show that the following holds:

min
θ∈Θ

1

T

T∑
t=1

f(xt,θ) ≥
(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
− 4βT

√
λγT
T

, (20)

where xt is the point queried at time t.

To prove Eq. (20) we use the lower confidence bound and (14):

min
θ∈Θ

1

T

T∑
t=1

f(xt,θ) ≥ min
θ∈Θ

1

T

T∑
t=1

lcbt−1(xt,θ) (21)

= min
θ∈Θ

1

T

T∑
t=1

(
ucbt−1(xt,θ)− 2βtσt−1(xt,θ)

)
(22)

≥
(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
−max
θ∈Θ

1

T

T∑
t=1

2βtσt−1(xt,θ) (23)

≥
(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
− 2βT

T

T∑
t=1

max
θ∈Θ

σt−1(xt,θ) (24)

=

(
min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
− 2βT

T

T∑
t=1

σt−1(xt,θt) (25)

≥
(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
− 4βT

√
γTλ

T
, (26)

where (22) follows from the definition of the confidence bounds in (5) and (6), (24) is due to monotonicty of
βt, and (25) is by rule (10) used in Algorithm 1 to select θt. Finally, (26) is obtained via the standard result
from (Srinivas et al., 2010; Chowdhury and Gopalan, 2017)

T∑
t=1

σt−1(xt,θt) ≤
√

4TλγT , (27)

when λ ≥ 1.

Next, we show that the first term can be upper bounded as follows:

max
P∈∆(X )

min
θ∈Θ

Ex∼P [f(x,θ)] ≤ 1

T

T∑
t=1

Eθ∼wt [ucbt−1(xt,θ)].
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To prove this, we start by upper bounding the minimum value of the inner objective:

max
P∈∆(X )

min
θ∈Θ

Ex∼P [f(x,θ)] ≤ max
P∈∆(X )

1

T

T∑
t=1

m∑
i=1

wt[i] · Ex∼P [f(x,θi)] (28)

≤ max
P∈∆(X )

1

T

T∑
t=1

m∑
i=1

wt[i] · Ex∼P
[
ucbt−1(x,θi)

]
(29)

= max
P∈∆(X )

1

T

T∑
t=1

Ex∼P
[ m∑
i=1

wt[i] · ucbt−1(x,θi)

]
(30)

≤ 1

T

T∑
t=1

max
P∈∆(X )

Ex∼P
[ m∑
i=1

wt[i] · ucbt−1(x,θi)

]
(31)

=
1

T

T∑
t=1

max
x∈X

m∑
i=1

wt[i] · ucbt−1(x,θi) (32)

=
1

T

T∑
t=1

m∑
i=1

wt[i] · ucbt−1(xt,θi) . (33)

We obtain Eq. (28) as the following trivially holds

min
θ∈Θ

Ex∼P [f(x,θ)] ≤
m∑
i=1

wt[i] · Ex∼P [f(x,θi)]

for each t and wt ∈ {w ∈ [0, 1]m :
∑m
i=1w[i] = 1}, and hence it also holds for the average value

min
θ∈Θ

Ex∼P [f(x,θ)] ≤ 1

T

T∑
t=1

m∑
i=1

wt[i] · Ex∼P [f(x,θi)].

Eq. (29) follows from (14), (30) follows by the linearity of expectation, and (32) holds since Dirac delta δx,
∀x ∈ X , is in ∆(X ). Finally, (33) follows by rule (9) used in Algorithm 1 to select xt.

Next, we bound the difference in (19) by combining the bounds obtained in (26) and (33):

max
P∈∆(X )

min
θ∈Θ

Ex∼P [f(x,θ)]−min
θ∈Θ

1

T

T∑
t=1

f(xt,θ)

≤ 1

T

T∑
t=1

Eθ∼wt
[
ucbt−1(xt,θ)

]
−
(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
+ 4βT

√
γTλ

T

≤
√

log(m)

2T
+ 4βT

√
γTλ

T
, (34)

where (34) follows by the guarantees of the no-regret online multiplicative weight updates algorithm played by
the adversary, that is,

1

T

T∑
t=1

Eθ∼wt
[
ucbt−1(xt,θ)

]
−
(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
≤
√

log(m)

2T
, (35)

with the learning rate set to ηT =
√

8 log(m)
T . For more details on this result see (Cesa-Bianchi and Lugosi, 2006,

Section 4.2) where the same online algorithm is considered. Specifically, the result above follows from (Cesa-

Bianchi and Lugosi, 2006, Theorem 2.2) by noting that
∑T
t=1 Eθ∼wt

[
ucbt−1(xt,θ)

]
=
∑T
t=1w

T
t · ucbt−1(xt, ·),

minθ∈Θ

∑T
t=1 ucbt−1(xt,θ) = minw∈∆(Θ)

∑T
t=1w

T · ucbt−1(xt, ·) and ucbt−1(·, ·) ∈ [0, 1] for every t. In our
case, the objective function changes with t but remains bounded, which allows the result to hold despite the
changes (see time-varying games result extension (Cesa-Bianchi and Lugosi, 2006, Remark 7.3)).

By rearranging (34) and by letting U (T ) be the uniform distribution over the queried points {x1, . . . ,xT } during



Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause

the run of Algorithm 1, we obtain:

min
θ∈Θ

Ex∼U(T ) [f(x,θ)] ≥ max
P∈∆(X )

min
θ∈Θ

Ex∼P [f(x,θ)]−
√

log(m)

2T
− 4βT

√
γTλ

T
.

Finally, we require ε ≥
√

log(m)
2T + 4βT

√
γTλ
T , which we obtain when

T ≥ 1

ε2

(
log(m)

2
+ βT

√
32λγT log(m) + 16β2

TλγT

)
.

B Proof of Corollary 3

Proof. The proof closely follows the one of Theorem 2. The main changes are due to the modified best-response
rule from (16).

For a given distribution Q ∈ ∆(Θ) and trade-off parameter χ ∈ (0, 1], we can define the new function

g(x,θ) := χ · f(x,θ) + (1− χ) · Eθ∼Q[f(x,θ)] (36)

Same as before, our goal is to upper bound the difference:

max
P∈∆(X )

min
θ∈Θ

Ex∼P [g(x,θ)]−min
θ∈Θ

1

T

T∑
t=1

g(xt,θ), (37)

where xt is the point selected at time t by GP-MRO using the modified best-response rule as in (16).

Next, we condition on the event in Lemma 1 holding true, and we provide upper and lower bounds of the first
and second term, respectively.

First, we show that the second term of (37) can be lower bounded as:

min
θ∈Θ

1

T

T∑
t=1

g(xt,θ) ≥ χ
(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
+ (1− χ)

(
1

T

T∑
t=1

E
θ∼Q

[ucbt−1(xt,θ)]

)
− 4βT

√
λγT
T

. (38)

To prove Eq. (38) we make use of (36) and similar arguments as the ones used in the proof of Theorem 2:

min
θ∈Θ

1

T

T∑
t=1

g(xt,θ) = χ

(
min
θ∈Θ

1

T

T∑
t=1

f(xt,θ)

)
+ (1− χ)

(
1

T

T∑
t=1

E
θ∼Q

[f(xt,θ)]

)

≥ χ
[(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
− 2βT

T

T∑
t=1

σt−1(xt,θt)

]
+ (1− χ)

(
1

T

T∑
t=1

E
θ∼Q

[f(xt,θ)]

)

≥ χ
[(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
− 2βT

T

T∑
t=1

σt−1(xt,θt)

]
+ (1− χ)

(
1

T

T∑
t=1

E
θ∼Q

[ucbt−1(xt,θ)− 2βtσt−1(xt,θ)]

)

≥ χ
(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
+ (1− χ)

(
1

T

T∑
t=1

E
θ∼Q

[ucbt−1(xt,θ)]

)
− 2βT

T

T∑
t=1

σt−1(xt,θt)

≥ χ
(

min
θ∈Θ

1

T

T∑
t=1

ucbt−1(xt,θ)

)
+ (1− χ)

(
1

T

T∑
t=1

E
θ∼Q

[ucbt−1(xt,θ)]

)
− 4βT

√
γTλ

T
.

Next, we show that the first term of (37) can be upper bounded as:

max
P∈∆(X )

min
θ∈Θ

Ex∼P [g(x,θ)] ≤ χ
(

1

T

T∑
t=1

E
θ∼wt

[ucbt−1(xt,θ)]

)
+ (1− χ)

(
1

T

T∑
t=1

E
θ∼Q

[ucbt−1(xt,θ)]

)
. (39)
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To prove this we use similar arguments as in the proof of Theorem 2:

max
P∈∆(X )

min
θ∈Θ

Ex∼P [g(x,θ)] ≤ max
P∈∆(X )

1

T

T∑
t=1

m∑
i=1

wt[i] · Ex∼P [g(x,θi)]

≤ 1

T

T∑
t=1

max
P∈∆(X )

Ex∼P
[ m∑
i=1

wt[i] · g(x,θi)]

]

=
1

T

T∑
t=1

max
x∈X

m∑
i=1

wt[i] · g(x,θi)

=
1

T

T∑
t=1

max
x∈X

[
χ ·

m∑
i=1

wt[i] · f(x,θi) + (1− χ) · E
θ∼Q

[f(x,θ)]

]

≤ 1

T

T∑
t=1

max
x∈X

[
χ ·

m∑
i=1

wt[i] · ucbt−1(x,θi) + (1− χ) · E
θ∼Q

[ucbt−1(x,θ)]

]

= χ

(
1

T

T∑
t=1

m∑
i=1

wt[i] · ucbt−1(xt,θ)

)
+ (1− χ)

(
1

T

T∑
t=1

E
θ∼Q

[ucbt−1(xt,θ)]

)
, (40)

where (40) is obtained by the rule in (16) used to select xt.

Next, we bound the difference in (37) by combining the bounds (38) and (39) and applying (35) to obtain:

max
P∈∆(X )

min
θ∈Θ

Ex∼P [g(x,θ)]−min
θ∈Θ

1

T

T∑
t=1

g(xt,θ) ≤ χ
√

log(m)

2T
+ 4βT

√
γTλ

T
, (41)

By letting U (T ) be the uniform distribution over the queried points {x1, . . . ,xT } and by using the definitions of
W (·) and P∗ together with the bound (41), we obtain:

W (U (T )) = min
θ∈Θ

1

T

T∑
t=1

g(xt,θ) ≥ max
P∈∆(X )

min
θ∈Θ

Ex∼P [g(x,θ)]− χ
√

log(m)

2T
− 4βT

√
γTλ

T

= W (P∗)− χ
√

log(m)

2T
− 4βT

√
γTλ

T
(42)

Finally, we require ε ≥ χ
√

log(m)
2T + 4βT

√
γTλ
T , which we obtain when

T ≥ 1

ε2

(
χ2 log(m)

2
+ χ βT

√
32λγT log(m) + 16β2

TλγT

)
.


