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Abstract
Motivated by applications in shared mobility,
we address the problem of allocating a group of
agents to a set of resources to maximize a cumu-
lative welfare objective. We model the welfare
obtainable from each resource as a monotone
DR-submodular function which is a-priori un-
known and can only be learned by observing the
welfare of selected allocations. Moreover, these
functions can depend on time-varying contextual
information. We propose a distributed scheme to
maximize the cumulative welfare by designing a
repeated game among the agents, who learn to act
via regret minimization. We propose two design
choices for the game rewards based on upper
confidence bounds built around the unknown
welfare functions. We analyze them theoretically,
bounding the gap between the cumulative welfare
of the game and the highest cumulative welfare
obtainable in hindsight. Finally, we evaluate our
approach in a realistic case study of rebalancing a
shared mobility system (i.e., positioning vehicles
in strategic areas). From observed trip data, our
algorithm gradually learns the users’ demand
pattern and improves the overall system operation.

1. Introduction
A number of important real-world problems consist of re-
peatedly allocating agents to resources to maximize a cu-
mulative welfare objective. Examples include position-
ing sensors to maximize the probability of detecting an
event (Krause & Guestrin, 2007), or allocating bandwidth to
nodes of a wireless network (Stanczak et al., 2006). These
problems have far-reaching applications in several areas of
science and engineering (Katoh & Ibaraki, 1998).

In certain applications, however, the welfare objective func-
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tion (i.e., the quality measure of a given allocation) is a-
priori unknown and can only be learned online by observing
the outcome of proposed allocations. Moreover, outcomes
can depend on external varying contextual factors, e.g., time,
weather, etc.

A concrete example scenario, which we address in Sec-
tion 6, is the problem of rebalancing a Shared Mobility
System (SMS), such as bike or scooter sharing. Here the
goal is to strategically reposition vehicles in a city (typi-
cally overnight by using transportation trucks) to increase
the vehicles’ availability and minimize the users’ dissatis-
faction level. SMSs have experienced tremendous growth
over the past decade, offering a compelling alternative to
classic transportation systems. Their potential benefits are
numerous, including sustainability, increase in efficiency,
and reduction of costs, among many others (Laporte et al.,
2018). Effective rebalancing of such systems, however, is
key to their success. In these application, the exact demand
for vehicles is unknown ahead of time and depends on ex-
ternal factors such as weather.

Motivated by this important application, we consider the
problem of online resource allocation with unknown wel-
fare functions. We propose a distributed approach that prov-
ably attains near-optimal solutions to this problem, and we
demonstrate the performance in a realistic case study on
data from an SMS in Louisville (KY, US).

1.1. Related work

Distributed resource allocation. Resource allocation prob-
lems are typically addressed by distributed protocols, where
each agent is assigned to one or more resources based on
local computations. The general game-theoretic framework
of Marden & Wierman (2013) proposes to design a game
between the agents and retrieve allocations by computing
the resulting game equilibria. In the case of submodular
welfare functions (which is a typical assumption in these
problems), games can be designed according to Vetta (2002)
so that such equilibria attain at least a 0.5-approximation
to the optimal achievable welfare. These guarantees hold
also in the online setting where agents act via regret mini-
mization (Blum et al., 2008), and with continuous strategy
sets (Sessa et al., 2019a). Typical game design choices,
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however, assume the welfare functions are fully known and
can be evaluated at different game actions. We build on the
framework of Marden & Wierman (2013), with the impor-
tant difference that we deal with unknown welfare functions,
which may also depend on time-varying contextual infor-
mation. This leads to new trade-offs and challenges in
designing suitable games.

Bayesian optimization. An independent body of literature
focuses on optimizing unknown functions from sequential
noisy evaluations. Several algorithms using Bayesian
non-parametric models have been developed over the years
(e.g., Mockus, 1989; Srinivas et al., 2010; Chowdhury &
Gopalan, 2017; Krause & Ong, 2011; Bogunovic et al.,
2018; Sessa et al., 2019a), under different assumptions.
They use Gaussian process (Rasmussen & Williams, 2005)
regression techniques to build a confidence interval around
the unknown objective function, and can implicitly balance
exploration (select points with high uncertainty) and
exploitation (select high-rewarding points). However, these
algorithms are intractable in our resource allocation setup,
since the set of possible allocations to be considered is
exponential in the number of agents. Instead, our distributed
approach employs the aforementioned techniques to main-
tain an upper confidence bound on the welfare functions and
uses these bounds to compute game rewards for the agents.

Submodular optimization. The problem considered in
Section 2 can also be abstracted as an online maximization
of a sequence of monotone submodular functions, for which
greedy algorithms can converge to (1� 1/e)-approximation
guarantees under different constraint sets (Golovin et al.,
2014; Zhang et al., 2019). However, they require multiple
evaluations of these functions to compute marginal
contributions (or their gradients in continuous domains).
Chen et al. (2017), instead, consider unknown functions and
assume noisy observations of the marginal contributions.
Compared to these works, we assume observing only
the welfare of the selected allocations (i.e., the so-called
bandit feedback). Zhang et al. (2019) consider online
submodular bandit optimization but with a significantly
slower convergence due to the use of high-variance gradient
estimators. Instead, in this work we impose kernel-based
regularity assumptions which allow us to learn the welfare
functions online from past observed data.

Truck-based rebalancing of SMSs. Several truck-based
rebalancing strategies for SMSs have been proposed in the
literature. A large body of works (e.g., Dell’Amico et al.,
2014, and references therein), employ mathematical pro-
gramming techniques to find optimal routes for the trucks,
given a pre-specified vehicles’ positioning plan. These
results are complementary to our work in that we focus on
optimizing the latter. The line of works initiated by Ghosh
et al. (2015) addresses dynamic allocations of vehicles to

stations, proposing a mixed-integer robust optimization
framework that considers a finite set of possible demand
scenarios. Their problem size increases with the number
of trucks, prediction horizon, and possible scenarios, and is
solved using Lagrangian duality techniques. Compared to
these works, albeit we only focus on static (i.e., overnight)
rebalancing, our approach is distributed and uses observed
demand data to learn about users’ demand. Jian et al. (2016)
find strategic vehicle allocations using simulation-based
optimization heuristics, while Bhatia et al. (2019) propose a
deep reinforcement learning approach. Both these methods,
however, require access to a reliable simulator and a
large number of evaluations. Other works, use historical
data to fit suitable models (e.g., station-based Poisson
processes, Freund et al. (2020), Neural Networks, Lin
et al. (2018), Random Forests, Yang et al. (2016)) to
predict users’ demand and use them, in a separate step, for
repositioning. Compared to these methods, our approach
gradually learns the users’ demand patterns online. The use
of upper confidence bound functions allows to implicitly
trade-off between attempting new rebalancing strategies
(exploration) and focusing on high-rewarding allocations
according to the data observed so far (exploitation). As
we show in our experimental Section 6, this allows us to
effectively learn the users’ demand patterns and produce
efficient allocations after a few days of operation.

1.2. Contributions.

We address the problem of online resource allocation with
unknown and context-dependent welfare.

• We propose a distributed algorithm, D-SUBUCB (Dis-
tributed Submodular Upper Confidence Bound) which
simulates a repeated game among the agents, who act via
regret minimization, and computes game rewards based
on upper confidence bound techniques.

• We theoretically analyze two game design choices,
bounding the gap between the game cumulative welfare
and the welfare obtainable in hindsight by a best fixed
allocation or, in case contexts are observed at decision
time, by the best policy mapping contexts to allocations.

• We formulate the problem of rebalancing a Shared Mo-
bility System according to our model and showcase the
performance of our approach in rebalancing the shared
system of Louisville, KY, based on historical trip data.

1.3. Notation.

We denote with ei, 0, and 1, the ith unit vector, null vector,
and the all-one vector of appropriate dimension, respectively,
while In 2 Rn⇥n is the identity matrix. Given x, y 2 Rd,
we let x[i] be the ith coordinate and x  y be a coordinate-
wise inequality. We also define [n] := {1, . . . , n}.
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2. Problem formulation
We consider the sequential decision-making problem of
allocating N agents among R resources repeatedly over
time. We let X i

⇢ [0, xmax]
R be the decision set for agent i

and X := X
1
⇥ · · ·⇥ X

N be the whole strategy space. In
our SMS application, e.g., N is the number of trucks used
for rebalancing, each with a capacity of xmax vehicles which
can be positioned over R candidate regions. Moreover, at
each round t, we allow the decision-making problem to be
influenced by a (potentially different) context vector zt 2 Z

(e.g., time, weather, etc.). The quality of a given allocation
(i.e., rebalancing strategy in a SMS) xt 2 X is measured
by the welfare function � : X ⇥ Z ! R+ which we define
as an additive function:

�(xt, zt) :=
RX

r=1

�r
(xt, zt) , (1)

where each �r
(·) measures the welfare gained from re-

source r. Note that (1) is without loss of generality in that �
is generally non-separable over the resources.1 That is, each
welfare function �r does not depend exclusively on the vari-
ables {xi

t[r], i 2 [N ]} but on the whole allocation vector xt.
In the SMS application, �(xt, zt) might quantify the total
number of trips completed in day t (i.e., number of users
who could successfully utilize the system), where each �r(·)
measures the number of trips started from region r. The
welfare is non-separable as the number of trips starting from
region r depends also on the vehicles xi

t[j], j 6= r, since
users could bring more vehicles from region j to region
r during morning hours. Our goal is to allocate agents to
resources to maximize the cumulative welfare

P
t �(xt, zt).

Many resource allocation problems, such as those in the
SMS domain satisfy two important properties: Monotonic-
ity and submodularity, a natural notion of diminishing re-
turns. In particular, we assume each �r

(·, z) is a mono-
tone (i.e., for all x1  x2 2 X , �(x1, z)  �r

(x2, z))
and DR-submodular function for each z 2 Z , as de-
fined below. Without loss of generality we also assume
�r

(0, z) = 0, 8z.2

Def 1 (DR-Submodularity, (Bian et al., 2017)). A function
f : D ✓ Rd

! R is DR-submodular if, for all x  y 2 D,
8i 2 [d], 8k � 0 such that (x+ kei) and (y + kei) 2 D,

f(x+ kei)� f(x) � f(y + kei)� f(y) .

When �r
(·, z) is twice-differentiable, it is DR-submodular

whenever all entries of its Hessian are non-positive. More-
over, in case of binary domains D = {0, 1}d, Def 1 co-
incides with submodularity of set functions (Bach, 2019).
Note that these assumptions are verified in our SMS applica-
tion since increasing the number of vehicles leads to a higher

1This is different from, e.g., Marden & Wierman (2013);
Paccagnan et al. (2020) who consider separable welfare functions.

2Otherwise one could treat these terms as constant offsets.

number of trips and lower marginal returns (we provide
more details in Section 6). Finally, note that the above setup
includes also several well-studied problems such as sen-
sor placement, vehicle target assignment, and graph color-
ing (see Marden & Wierman, 2013, and references therein).

Compared to previous works, here we focus on the chal-
lenging setting in which the functions {�r

(·), r 2 [R]} are
a-priori unknown, and we can only learn them online by
selecting allocations xt, and observing the noisy rewards:

rrt = �r
(xt, zt) + ⇠rt , r = 1, . . . , R (2)

where ⇠rt is �-sub-Gaussian noise. This is the case in SMSs,
where �(·) does not have a closed-form expression as it
depends on the complex users’ demand patterns, and we can
only observe the outcome of selected rebalancing strategies.

Performance benchmark. We make no assumption on
how the contexts zt’s are generated 3 and, after T rounds,
we consider the natural benchmark:

OPT = max
x2X

TX

t=1

�(x, zt) , (3)

i.e., the best cumulative reward obtainable by a single
strategy if the sequence of contexts and the welfare
functions were known ahead of time. In Section 5, assuming
that context zt can be observed before choosing xt, we
consider the stronger benchmark of finding the best policies
mapping contexts to allocations.

Problem (3) can be seen as an instance of online submod-
ular maximization, which is in general NP-hard (Golovin
et al., 2014). Moreover, when only bandit feedback (2)
is available, existing algorithms (Zhang et al., 2019)
converge to a (1� 1/e)�1 approximation with a slow rate
of O(T 8/9

). In this work, we take a different approach
and make a smoothness assumption on the welfare
functions. Namely, we assume each �r has a bounded
(and small) norm ||�r

||kr  B in a Reproducing Kernel
Hilbert Space (RKHS) associated to a kernel function
kr : (X ⇥ Z) ⇥ (X ⇥ Z) ! R+. Typical kernel choices
are polynomial, squared-exponential, and Màtern kernels
(see, e.g., Frazier, 2018, and references therein). This is
a non-parametric assumption widely used in Bayesian
optimization which, as outlined later, allows us to use the
observed data to efficiently learn about unseen outcomes.

Several algorithms can optimize unknown functions sub-
ject to the discussed smoothness and feedback model. For
instance, GP-MW (Sessa et al., 2019a) and GP-UCB (Srini-
vas et al., 2010) can provably converge to OPT under adver-
sarial or known contexts’ sequences, respectively. However,
in our resource allocation setup, their computational com-
plexity scales exponentially with the number of agents N

3In fact, they can be chosen by an adaptive adversary (Cesa-
Bianchi & Lugosi, 2006) as a function of the data up to t� 1.
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Algorithm 1 Example of NO-REGRET algorithm class, with
update rule of MWU (Freund & Schapire, 1997)

Require: Set X with |X | = K, learning rates {⌘t}Tt=1
.

w = 1/K · [1, . . . , 1] 2 RK . // initialize weights
Def play action():

p = w · 1/PN
i=1 w[i] // mixed strategy

x ⇠ p // sample action

Return x

Def update(f(·)):
f = [f(x)]x2X 2 RK // rewards vector

w = w · exp(⌘tf) // MWU update rule

Return

(as they require to iterate over the set X of possible allo-
cations) and hence they become intractable even for small
problem instances. Instead, the approach proposed in this
work builds on the distributed game-theoretic framework of
Marden & Wierman (2013), with the main difference of deal-
ing with unknown and context-dependent welfare functions.
Moreover, compared to Marden & Wierman (2013), we con-
sider a more general objective which is non-separable. This
leads to new trade-offs and challenges that we address next.

3. Proposed approach
Our approach utilizes two main interconnected algorithmic
components. The first component consists of computing
allocations by designing and simulating a repeated game
among the agents, while the second one relies on RKHS
regression to build suitable confidence bounds around the
unknown functions �r. They are presented in the next two
subsections. Then, in Section 4 we propose and analyze
two concrete game design choices.

3.1. Designing game dynamics

To maximize the cumulative welfare
P

t �(xt, zt), we
exploit the decoupled constraint structure by simulating a
repeated game among the N agents, or players in the game.
At every round t, each player i selects action xi

t 2 X
i based

on its past observations, as outlined below. Then, we build
allocation xt = [x1

t , . . . , x
N
t ] as the joint vector of actions

played. We orchestrate the coordination of the players via
designing suitable reward functions, which the players learn
to selfishly optimize. By careful design of these rewards,
we aim to maximize the social welfare. We discuss specific
choices in Section 4. At each time t, we denote the reward
function of each player i by f i

t : X
i
! R. Concerning

the players’ behavior, we let each player act and update its
strategy according to a no-regret algorithm (Cesa-Bianchi
& Lugosi, 2006). Given a sequence of reward functions
f i
1
, . . . , f i

T , the regret of player i is defined as

Figure 1. A sketch of the D-SUBUCB algorithm

Algorithm 2 The D-SUBUCB algorithm

Require: Set X =
QN

i=1
X

i, kernels {kr}Rr=1
, {�r

t }
T
t=1

.
/* Initialize learning algorithms /*

1: Algoi  NO-REGRET(X i), i = 1, . . . , N
2: for t = 1, . . . , T do
3: Nature chooses context zt

/* In parallel, sample actions /*

4: xi
t  Algoi.play action(), i = 1, . . . , N

5: Select strategy xt = [x1
t , . . . , x

N
t ]

6: for r = 1, . . . , R do
7: Observe noisy reward rrt = �r

(xt, zt) + ⇠rt
8: Update ucb

r
t (·) according to (4) and (5).

9: end for
/* In parallel, provide feedback to algs. /*

10: Compute game rewards {f i
t (·)}

N
i=1

via (6) or (8).
11: Algoi.update(f i

t (·)), i = 1, . . . , N
12: end for

Def 2 (Regret of player i). The regret of player i after T
game rounds is

Ri
(T ) = max

x2X i

TX

t=1

f i
t (x)�

TX

t=1

f i
t (x

i
t) .

Under different game assumptions, several no-regret
algorithms exist ensuring that Ri

(T )/T ! 0 as T ! 1
(in expectation, or with high probability). As an example
of such algorithms, MWU (Freund & Schapire, 1997)
presented in Algorithm 1, can be used in case X

i is finite.

Note that the proposed approach is parallelizable across the
N players, and therefore its parallel computational complex-
ity does not scale with N (even if players’ strategies are
updated sequentially, it scales linearly on N as opposed to
considering the exponential action space X ). Nevertheless,
we are left with the important task of designing suitable
players’ reward functions that can steer the game to high
welfare. The proposed design choices rely on the following
RKHS regression techniques.

3.2. RKHS regression

At every round t, and for each resource r, standard kernel
ridge regression on the past observed data {x⌧ , z⌧ , rr⌧}

t
⌧=1
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allows us to compute posterior mean and variance estimates
of the unknown welfare function �r(·), respectively as:

µr
t (x, z) = kt(x, z)

T
�
Kt + �It

��1
rt (4)

�r
t (x, z)

2
= kr(x, z,x, z)

� kt(x, z)
T
�
Kt + �It

��1
kt(x, z) ,

where kt(x, z) = [kr(x, z,x1, z1), . . . , kr(x, z,xT , zT )]T ,
[Kt]i,j = kr(xi, zi,xj , zj) is the kernel matrix, � > 0 is
a regularization parameter and rt = [rr

1
, . . . , rrt ]

T is the
vector of noisy observations. Moreover, these can be used
to construct the upper confidence bound function:

ucb
r
t (x, z) := µr

t (x, z) + �r
t �

r
t (x, z) , (5)

where �r
t is a tunable confidence parameter. A main result

from Srinivas et al. (2010); Abbasi-Yadkori (2013) (see
Lemma 1 in Appendix A.1) shows that under our regularity
assumptions, �r

t can be set such that, with high probability,
ucb

r
t (x, z) � �r

(x, z) for all x, z, and t � 1.

We next utilize the upper confidence bound functions com-
puted in (5) to design suitable reward functions f i

t ’s for
the players. Our overall approach is summarized in the
proposed (meta) algorithm D-SUBUCB (Distributed Sub-
modular Upper Confidence Bound), sketched in Figure 1
and outlined in Algorithm 2.

4. Design choices and guarantees
4.1. Total Welfare (TW) design

Under Total Welfare (TW) design, the rewards for each
player i at round t are computed as:

f i
t (x)

TW
:=

RX

r=1

ucb
r
t (x, x

�i
t , zt), x 2 X

i, (6)

i.e., as an aggregate upper confidence bound on the total
game welfare, under opponents’ actions x�i

t . The idea
behind this design choice can intuitively be explained as
follows. As the game proceeds and more data are available,
the ucb

r
t ’s functions converge to the true welfare functions.

At the same time, as shown by Vetta (2002) and Sessa et al.
(2019a), the DR-submodularity property (Def 1) ensures
that the players’ rewards f i

t (·) are ‘aligned’ with the total
welfare �(·, z) for each z. Therefore, by minimizing their
regret, the players (and hence the allocations computed by
D-SUBUCB) obtain high welfare and, as more precisely
stated in the next theorem, achieve provable approximation
guarantees to (3). We relegate its proof to Appendix A.3.

The obtained guarantees depend on the notions of average
and worst-case game curvature defined below.
Def 3 (Game curvatures). Consider a sequence of contexts
z1, . . . , zT . We define average and worst-case game curva-

ture, as:

cavg({zt}
T
t=1

) = 1� inf
i

PT
t=1

⇥
r�(2xmax, zt)

⇤
iPT

t=1

⇥
r�(0, zt)

⇤
i

2 [0, 1] ,

cwc({zt}
T
t=1

) = 1� inf
t,i

⇥
r�(2xmax, zt)

⇤
i⇥

r�(0, zt)
⇤
i

2 [0, 1] ,

where xmax = xmax1.

The average game curvature coincides with the curva-
ture (Sessa et al., 2019b, Definition 2) of the DR-submodular
function �avg(·) =

PT
t=1

�(·, zt)/T which describes the
time-averaged game, with respect to the set [0, 2xmax]

R.
Instead, cwc({zt}Tt=1

) quantifies the worst-case curvature
over the game rounds. In Appendix A.2, we define these no-
tions in the more general case where � is non-differentiable.
Both notions measure how close �(·, z) is from being linear,
in which case cavg({zt}Tt=1

) = cwc({zt}Tt=1
) = 0 and the

optimization goal (3) becomes separable over the N agents.
In general, it holds 0  cavg({zt}Tt=1

)  cwc({zt}Tt=1
)  1

(see Appendix A.2, Lemma 3).

Thm 1. Consider the setup of Section 2. When D-SUBUCB
is run with TW design (rule (6)) and �r

t ’s are set according
to Lemma 1 (Appendix A.1), with high probability,
TX

t=1

�(xt, zt) � ↵ ·OPT

�N
TX

t=1

RX

r=1

2�r
t �

r
t (xt, zt)�

NX

i=1

Ri
(T ) ,

with ↵ = max
�
1� cavg({zt}Tt=1

),
�
1+ cwc({zt}Tt=1

)
��1 .

The guarantees obtained in Thm 1 can be made more explicit
by defining, for each resource r, the maximum information
gain (Srinivas et al., 2010):

grT := max
{(xt,zt)}T

t=1

0.5 log det(IT +KT /�). (7)

This sample complexity parameter quantifies the reduction
in uncertainty about �r

(·) after T noisy observations. More-
over, assume |X

i
| = K and that MWU (Algorithm 1) is

used for each player. Then, we can conclude the following.

Corollary 1. Consider the setup of Section 2 and assume
|X

i
| = K for all i. Then, if D-SUBUCB is run with TW

design, �r
t = B + ���1/2

p
2(grt + log(2/�)) and NO-

REGRET is MWU (Algorithm 1), with probability 1� �,
TX

t=1

�(xt, zt) � ↵ ·OPT�N
RX

r=1

O
�
grT
p

T
�

�N · O
�p

T logK +

p
T log(2/�)

�
,

with ↵ = max
�
1� cavg({zt}Tt=1

),
�
1+ cwc({zt}Tt=1

)
��1 .

The above guarantee is obtained from Thm 1 by substi-
tuting the well-known kernel-dependent O

�
grT
p
T
�

bound
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on the sum of posterior standard deviations (see Lemma 2
in Appendix A.1), and the high probability regret bound
of MWU (Freund & Schapire, 1997). Further, grT can be
bounded analytically for popularly used kernels, e.g., when
X ⇥Z ⇢ Rd, grT  O(log(T )d+1

) and grT  O(d log(T ))
for squared exponential and linear kernels, respectively
(Srinivas et al., 2010) . This shows that, as T ! 1, D-
SUBUCB approaches sublinearly an ↵-approximation of
OPT, with ↵ 2 [0.5, 1]. Such approximation generalizes
the ones of Vetta (2002); Sessa et al. (2019b) to the case of a
context-dependent welfare. It is an a-posteriori performance
guarantee, as it depends on the sequence of observed con-
texts. Moreover, it depends on the average game sequence
instead of only considering the worst-case context as done
in (Sessa et al., 2020). Finally, note that cavg({zt}Tt=1

) and
cwc({zt}Tt=1

) cannot be computed as �(·) is unknown, but
they could be estimated, e.g., using its posterior mean.

4.2. Anonymous game with binary strategy sets: Equal
Share (ES) design

In this section we define an alternative design choice, for
the special case in which the strategy spaces are binary,
X

i
= {0, xmax}

R, and the game is anonymous. To define an
anonymous game, we first introduce some helpful notation.
For a given allocation x 2 X , we let |x|r denote the number
of players allocating a non-zero quantity in resource r, i.e.,
|x|r := |{i : xi

[r] > 0}|. A game is called anonymous
if, for each resource r and any pair x1,x2 2 X such that
|x1|i = |x2|i for all i 2 [R], �r

(x1, z) = �r
(x2, z) for all

z. Perhaps the most natural type of anonymous game is
when �r

(x, z) = �r
(
PN

i=1
xi, z) for all r, i.e., the game

welfare does not depend on which player is allocated to
each resource, but only on the total number of players
allocated. This is true for the considered SMS rebalancing
problem, since the number of daily trips depends only on
the total number of vehicles positioned in each region.

In this setting, we define the Equal Share (ES) design choice:

f i
t (x)

ES
:=

X

r:x[r]>0

1

|(x, x�i
t )|r

· ucb
r
t (x, x

�i
t , zt), x 2 X

i.

(8)

Under ES design, player i’s rewards only depend on the
resources selected (i.e., where player i has a nonzero allo-
cation) and the welfare from each resource is scaled by the
number of players selecting it.

Compared to TW design, the ES rule (8) is computationally
more efficient in that each f i

t (x) is computed using only
a subset of the functions {ucb

r
t , r 2 [R]}. As we will

see, it also leads to different performance guarantees.
Equal share design was analyzed by Marden & Wierman
(2013) in case of a known and separable welfare function.
Here, we consider the more challenging scenario where

functions �r’s are unknown. Moreover, we analyze
its performance for (generally) non-separable welfare
functions considered in this work. To do so, we define the
notion of weak-separability error.

Given strategy vector xi
2 X

i, we define [xi
]�r to be the

modified version of xi where xi
[r] is set to 0.

Def 4 (Weak-separability error). We define weak-
separability error of the game in resource r and context z,

✏r(z) = max
i2[N ]

max
xi2X i

�r
([xi

]�r, 0, z)� �r
(0, z). (9)

Note that ✏r(z) � 0, and ✏r(z) = 0 8r and 8z, when the
welfare � is separable. Moreover, even when � is non-
separable, ✏r(z) = 0 in case each player can select at most
one resource (i.e., each xi 2 X

i has at most one nonzero
entry). The following theorem (proof in Appendix A.4)
bounds the performance of D-SUBUCB with ES design.

Thm 2. Consider the setup of Section 2 and assume the
game is anonymous and X

i
= {0, xmax}

R, 8i. When D-
SUBUCB is run with ES design (rule (8)) and �r

t ’s are set
according to Lemma 1 (Appendix A.1), with high probability,
TX

t=1

�(xt, zt) � ↵ ·OPT

�

TX

t=1

RX

r=1

2�r
t �

r
t (xt, zt)�

NX

i=1

Ri
(T )�N

TX

t=1

RX

r=1

✏r(zt),

with ↵ = max
�
1� cavg({zt}Tt=1

),
�
1+ cwc({zt}Tt=1

)
��1 .

As for TW design (Thm 1), D-SUBUCB under ES design
approaches a ↵-approximation of OPT. However, com-
pared to the guarantees of TW design, the standard devi-
ations’ term (first term in the second line) in Thm 2 does
not depend on the number of players N (under TW design,
instead, this term depends linearly on N , see Thm 1). Intu-
itively, this is because with ES design rule (8) the uncertainty
about each function �r is shared among the players (while
under TW design (6) the reward of each player depends
on all such uncertainty). This comes at the price of incur-
ring an extra error term due to the weak-separability errors.
Whether this term is sublinear in T (or equal to 0) depends
on the considered application. We empirically compare TW
and ES design choices in Section 6.

5. Stronger benchmark: Seeking optimal
policies

Let us now assume, at each round t, context zt can be
observed before choosing allocation xt. This is the case in
many practical scenarios, e.g., when zt represents time or
other seasonal information. In this case, we can consider
the stronger performance benchmark of finding the optimal
policy ⇡ : Z ! X mapping contexts to allocations:
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(a) Daily demand and weather data (b) Candidate drop-off regions

Figure 2. Plot (a) shows the daily demand and weather data (i.e., number of trips, average temperature, and precipitation for the period
Jan-December 2019, excluding holidays). Black crosses in (b) indicate the candidate drop-off regions in the city map of Louisville, KY.

OPTc = max
⇡:Z!X

TX

t=1

�(⇡(zt), zt) . (10)

Note that OPTc � OPT for all contexts’ sequence, as
OPT is achieved when one considers only constant policies
(i.e., ⇡(z) = x, 8z) in (10).

As we formally show in Appendix B, all the results obtained
in the previous sections can also be extended to this richer
setting. The difference consists of equipping the N players
with algorithms that have sublinear contextual regret.

Def 5 (Contextual regret of player i). The contextual regret
of player i after T game rounds is

Ri
c(T ) = max

⇡:Z!X i

TX

t=1

f i
t (⇡(zt), x

�i
t , zt)�

TX

t=1

f i
t (xt, zt) .

Several such algorithms exist, depending on assumptions on
the rewards, contexts’ sequence, and decision sets (see, e.g.,
Bietti et al., 2018, and references therein). In this scenario,
the proposed D-SUBUCB simulates a contextual game
among the N players (as defined by Sessa et al., 2020), and
the allocations computed by D-SUBUCB satisfy similar
performance guarantees to Thm 1 and Thm 2 by replacing
OPT with the stronger benchmark OPTc, and the players’
regrets Ri

(T ) with their contextual counterparts Ri
c(T ),

under TW and ES design, respectively.

6. Experiments: Learning to rebalance a
Shared Mobility System

In this section, we evaluate our approach in a realistic case
study of rebalancing the SMS of Louisville, KY, based
on historical trip data. The system consists of various
dockless (i.e., free floating) bike and scooter sharing
operators, but we consider it as a unique SMS. We model
the rebalancing problem according to the setup of Section 2:
before each day t, a rebalancing strategy is represented by

xt = [x1
t , . . . , x

N
t ], where xi

t[r] indicates the number of
vehicles truck i drops off in region r. We let the welfare
function �(xt, zt) quantify the number of completed trips4

during day t (each �r
(·) measures the number of trips start-

ing from region r) and evaluate the rebalancing strategies
computed by the proposed D-SUBUCB algorithm. First,
we summarize our data and experimental setup.

Data and experimental setup. Data from Louisville
Advanced Planning Office (2020) include trips’ timestamps,
starting and end coordinates of the dockless SMS of the
city of Louisville, KY, for the year of 2019. We use these
data to simulate users’ demand and trips throughout the
one-year period, excluding bank holidays. We also consider
weather data (average daily temperature and precipitation)
from Weather Underground (2020). We identify R = 134

candidate drop-off regions by spatial clustering the trips
data using k-means (Lloyd, 1982). We find k = 300 initial
clusters and iteratively reduce them so that their minimum
distance is at least 0.5 km. Figure 2 shows daily demand
and weather data (a), and the candidate drop-off regions (b).

Although we have access only to successfully completed
trips (met demand), we let the trip data reflect the total
users’ demand and consider a small number of 40 available
vehicles (so that not all the trips can be completed). We
consider N = 5 trucks, each dropping off 8 vehicles to one
of the candidate regions before the day starts (vehicles are
positioned at midnight). Hence, X i

⇢ {0, 8}R, |X i
| = R,

for i 2 [N ]. We let context zt = [zt[1], zt[2], zt[3]] 2 R3

represent average daily temperature, precipitation, and
the users’ demand in day t (i.e., the total number of users
willing to rent a vehicle), respectively. Realistically we
assume zt is observed only at the end of each day.

Simulator. Given allocation xt, the number of daily trips
4Our black-box approach allows to model also other perfor-

mance measures, such as total trips’ distance or duration.
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(a) Daily-averaged trips (b) Daily-averaged unmet demand

Figure 3. Performance (mean ± 2 std. out of 3 runs) of different rebalancing strategies. D-SUBUCB leads to a higher number of trips and
reduces the unmet demand compared to the other baselines.

(a) NO-REBALANCING (b) UNIFORM (c) D-SUBUCB with ES design

# of trips: 106’594 129’281 281’642
unmet trips: 310’739 288’052 135’691

Figure 4. Trips’ starting coordinates (blue) and vehicles’ allocations (red circles with size proportional to the amount vehicles available in
each region at midnight, averaged over the year). When rebalancing does not take place (Left), vehicles tend to concentrate in the outer
areas of the city, while under random allocations (Middle) they are uniformly distributed across the city. D-SUBUCB learns the users’
demand patterns and positions vehicles in strategic areas. This increases the number of successful trips and reduces the unmet demand.

�(xt, zt) is computed as follows. We consider the historical
trip data on day t and process them in chronological order.
Each of these trips is successful if there exists a region
with more than one vehicle whose centroid is within 1 km
distance from the trip start coordinates. In such a case, one
vehicle is moved from this region to the region containing
the trip end coordinates. Otherwise, the trip is unmet. In
Appendix C we formally show that the considered objective
is monotone DR-submodular, a fact that we crucially exploit
in our proposed approach.

We evaluate the performance of D-SUBUCB, under TW
and ES design, when each player’s no-regret algorithm is
MWU (Freund & Schapire, 1997). To learn the welfare
functions �r

(·), we use a composite kernel k(xt, zt) =

k1(x̄t, zt[3]) ⇤ k2(zt[1], zt[2]), where x̄t =
PN

i=1
xi
t 2 RR

+

represents the total number of vehicles positioned in each
region, k1 is a polynomial kernel of degree 3 which mea-
sures similarity between allocations and demands, and k2 is
a squared-exponential kernel measuring weather similarity.

Moreover, we use two distinct models, depending on day t
being a weekday or a weekend. Kernel hyperparameters
are optimized offline over 100 random datapoints using a
maximum likelihood method and kept fixed for the whole
experiment duration. We compare D-SUBUCB with the
following baselines: 1) NO-REBALANCING: Each Sunday
night vehicles are randomly distributed over the regions,
and until the next Sunday their movement only depends
on users’ trips (i.e., no rebalancing happens), 2) UNIFORM:
each truck selects a random candidate region at each round t,
3) D-EXP3, a version of D-SUBUCB where each player
uses the bandit EXP3 (Auer et al., 2003) algorithm (since
EXP3 requires only bandit feedback, this baseline does not
use RKSH regression to learn the welfare functions and,
instead, relies on a high-variance rewards estimator).

In Figure 3 we show that D-SUBUCB leads to a higher num-
ber of trips and reduces the unmet demand, compared to the
baselines. This is also visible from Figure 4, where we plot
the average vehicles’ allocation (red circles, with size pro-
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portional to the average number of vehicles allocated in each
region) and the starting coordinates of successful trips (blue
circles). Under NO-REBALANCING, vehicles tend to con-
centrate in the outer areas of the city, while UNIFORM allo-
cates vehicles uniformly over the candidate regions. Instead,
after a few days D-SUBUCB learns the users’ demand pat-
terns and position vehicles in more strategic zones. This sig-
nificantly improves upon the bandit baseline D-EXP3 whose
high-variance estimator forces a long exploration phase. We
also note that ES outperforms TW design. This is in ac-
cordance with our theoretical guarantees since according to
Section 4 the considered game has separability errors (Def 4)
equal to 0 (because each truck can select at most 1 region).

7. Conclusion
We have considered the problem of sequentially allocating
agents to a set of resources to maximize a cumulative wel-
fare objective. Different from previous work, we focused
on the challenging setting in which the welfare function
is unknown, context-dependent, and can only be learned
by observing the outcomes of the selected allocations.
We have proposed D-SUBUCB, a distributed algorithm
that maximizes the cumulative welfare by building and
simulating a repeated game among the agents based on
upper confidence bounds techniques. Moreover, we have
proposed and analyzed two concrete game design choices
for our algorithm. Finally, motivated by the recent growth
of shared mobility systems, we have demonstrated the
effectiveness and practicality of our approach in a realistic
case study based on historical trip data of Louisville, KY.
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