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• RH-UCRL outperforms the other algorithms in terms of robust return.
• RH-UCRL has good performance in terms of average return..

CodePaper

RH-UCRL: A sample efficient algorithm that provably outputs a robust policy.

RH-UCRL 

• Aleatoric: inherent stochasticity from the system (e.g. sensor noise). 
• Epistemic: data scarcity (e.g. unknown mass of the robot links). 

• GP models are calibrated under certain conditions (Srinivas et al., 2010). 
• Bayesian NN models can be recalibrated empirically (Malik et al., 2019). 

The epistemic uncertainty 
contracts near observed data.
The true system is within the 
epistemic uncertainty confidence 
intervals.

Theoretical Results: Simple Regret

In the main paper, we also provide an analysis of cumulative regret. 
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How to output a single robust policy that works well for every tool?

We simulate an adversary that has the ability to choose the tool during training, 
but we cannot control it during testing. 

How to explore with the adversary is crucial for sample efficiency! 
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Performance

Optimal Policy

Goal: Output a policy 

I) Optimistic and Pessimistic Performance through Hallucination

II) Agent and Adversary Policy Selection

At the beginning of each episode, the agent and adversary use the optimistic 
and pessimistic estimates to select their policies.

III) Algorithm Output

After T episodes, the algorithm outputs the policy that maximizes the sequence of 
pessimistic estimates. 

We train the different algorithms for 200 episodes. Next, we freeze the agent policy 
and train the adversary for another 200 episodes. The average return is the return 
without an adversary. The robust return is the return with the fully trained adversary.

We construct optimistic and pessimistic estimates of the policies by optimizing 
w.r.t. the set of plausible models. 
To make the optimization practical, we use hallucination as in Curi et al. (2020), 
and reparameterize the set of plausible models with a hallucinated control input.
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• : A scalar that enlarges the confidence intervals for calibration.

• : A measure of complexity of the model-class we are trying to learn.
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episodes, RH-UCRL outputs a robust policy ⇡̂ that satisfies the requirement,
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