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Gaussian Process Optimization

Optimum

'

| _ Non-robust problem:

x* = arg max f(x)
xeDCR

Utility

L

Setting: GP/Bayesian optimization
> Unknown utility function f, modeled by Gaussian Process [~ GP(u, k)
» Sequentially query the unknown function f

Input

> Noisy and expensive point evaluations



Adversarially Robust GP Optimization
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Setting:

Robust problem:

x* =argmax min f(x+0)
xeDCR 0€A . (x)

Set of input perturbations:
A (x) = {x’ —x : dist(x,x’) < e}

> Unknown utility function f, modeled by Gaussian Process [~ GP(u, k)
» Sequentially query the unknown function f

> Noisy and expensive point evaluations



Adversarially Robust GP Optimization

Non-Robust Optimum

'

' Robust Optimum | Robust problem:
- ‘ i x* = argmax min f(x+0)
- xeDcR 0€A.(x)
& | Original
% "Function
Set of input perturbations:
Perturbed A (x) = {x’ —x : dist(x,x) < 6}
Function
| Inlput - Motivation: adversarial attack,
Implementation errors, etc.
Setting:

> Unknown utility function f, modeled by Gaussian Process [~ GP(u, k)
» Sequentially query the unknown function f
> Noisy and expensive point evaluations



Robust Algorithm: StableOpt

| Non-robust BO methods:

{ Thompson [Thompson '33]

Pl [Kushner’64]

| El [Mockus et al.’78]

| GP-UCB [Srinivas et al.’11]

, ES [Henning et al.’12]

| GP-UCB-PE [Contal et al.’13]

§ BamSOO [Wang et al.’14]

;, PES [Hernandez-Lobato et al.’14]
| MRS [Metzen’16]

| GLASSES [Gonzalez et al.’15

| OPES [Hoffman & Ghahramani’15]
| TruvaR [Bogunovic et al.'16]

| MES [Wang & Jegelka’17]

! FITBO [Ru et al.’18]

m KG [Wu et al.’17]

| the list goes on...
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Robust algorithm: StableOpt

Round 7:

» Choose: X, = argmax min ucb,_ (x + §)
eD 0EA(x)
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Robust Algorithm: StableOpt

Robust algorithm: StableOpt

Round 7:
» Choose: X, = argmax min ucb,_ (x + §)
eD 0EA(x)

» Select: 9, = argmin Icb,_ (X, + 0)
SEA (F))

> Observe noisy function value at x,+9,
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Theoretical Result

Theorem:

StableOpt guarantees that if
YT

T >
;/]2
then the reported point x”’ satisfies the following w.h.p.:

min f(x+8) > max min f(x+8) — 7,
deA (x 1)) x€DCR €A (x)

where T : Total number of points queried
n : Target accuracy
YT . Kernel-dependent information quantity




Variations

Robustness to unknown parameters:

e Goal: Choose x robust to different #, max minf(x, )
xeD 00

e Application: Tuning hyperparameters robust to different data types




Variations

Robustness to unknown parameters:

e Goal: Choose x robust to different #, max minf(x, )
xeD 00

e Application: Tuning hyperparameters robust to different data types

Robust group identification: Input space is partitioned into groups

Gl G2 Gk
e Goal: Identify the group with the highest worst-case function value
max min f(x)
Ge?d xeG

* Application: Robust group movie recommendation
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Abstract

In this paper, we consider the problem of Gaussian process (GP) optimization
with an added robustness requirement: The returned point may be perturbed by
an adversary, and we require the function value to remain as high as possible
even after this perturbation. This problem is motivated by settings in which the
underlying functions during optimization and implementation stages are different,
or when one is interested in finding an entire region of good inputs rather than only

a single point. We show that standard GP optimization algorithms do not exhibit

the desired robustness properties, and provide a novel confidence-bound based

u u algorithm STABLEOPT for this purpose. We rigorously establish the required num-
[re——— ber of samples for STABLEOPT to find a near-optimal point, and we complement

= = this guarantee with an algorithm-independent lower bound. We experimentally

demonstrate several potential applications of interest using real-world data sets,
and we show that STABLEOPT consistently succeeds in finding a stable maximizer
where several baseline methods fail.
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Gaussian processes (GP) provide a powerful means for sequentially optimizing a black-box function
f that is costly to evaluate and for which noisy point evaluations are available. Since its introduction,
this approach has successfully been applied to numerous applications, including robotics [21],
hyperparameter tuning [30], recommender systems [34], environmental monitoring [31], and more.

In many such applications, one is faced with various forms of uncertainty that are not accounted for
by standard algorithms. In robotics, the optimization is often performed via simulations, creating a
mismatch between the assumed function and the true one; in hyperparameter tuning, the function is
typically similarly mismatched due to limited training data; in recommendation systems and several
other applications, the underlying function is inherently time-varying, so the returned solution may
become increasingly stale over time; the list goes on.

In this paper, we address these considerations by studying the GP optimization problem with an
additional requirement of adversarial robustness: The returned point may be perturbed by an
adversary, and we require the function value to remain as high as possible even after this perturbation.
This problem is of interest not only for attaining improved robustness to uncertainty, but also for
settings where one seeks a region of good points rather than a single point, and for other related
max-min optimization settings (see Section 4 for further discussion).
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