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Abstract
The central task in many interactive machine learning systems can be formalized as the sequential

optimization of a black-box function. Bayesian optimization (BO) is a powerful model-based

framework for adaptive experimentation, where the primary goal is the optimization of the

black-box function via sequentially chosen decisions. In many real-world tasks, it is essential for

the decisions to be robust against, e.g., adversarial failures and perturbations, dynamic and time-

varying phenomena, a mismatch between simulations and reality, etc. Under such requirements,

the standard methods and BO algorithms become inadequate. In this dissertation, we consider

four research directions with the goal of enhancing robust and adaptive decision making in BO

and associated problems.

First, we study the related problem of level-set estimation (LSE) with Gaussian Processes

(GPs). While in BO the goal is to find a maximizer of the unknown function, in LSE one seeks to

find all "sufficiently good" solutions. We propose an efficient confidence-bound based algorithm

that treats BO and LSE in a unified fashion. It is effective in settings that are non-trivial to

incorporate into existing algorithms, including cases with pointwise costs, heteroscedastic noise,

and multi-fidelity setting. Our main result is a general regret guarantee that covers these aspects.

Next, we consider GP optimization with robustness requirement: An adversary may perturb

the returned design, and so we seek to find a robust maximizer in the case this occurs. This

requirement is motivated by, e.g., settings where the functions during optimization and imple-

mentation stages are different. We propose a novel robust confidence-bound based algorithm.

The rigorous regret guarantees for this algorithm are established and complemented with an

algorithm-independent lower bound. We experimentally demonstrate that our robust approach

consistently succeeds in finding a robust maximizer while standard BO methods fail.

We then investigate the problem of GP optimization in which the reward function varies

with time. The setting is motivated by many practical applications in which the function to be

optimized is not static. We model the unknown reward function via a GP whose evolution obeys

a simple Markov model. Two confidence-bound based algorithms with the ability to "forget"

about old data are proposed. We obtain regret bounds for these algorithms that jointly depend on

the time horizon and the rate at which the function varies.

Finally, we consider the maximization of a set function subject to a cardinality constraint k in

the case a number of items τ from the returned set may be removed. One notable application

is in batch BO where we need to select experiments to run, but some of them can fail. Our

focus is on the worst-case adversarial setting, and we consider both submodular (i.e., satisfies

a natural notion of diminishing returns) and non-submodular objectives. We propose robust

vii



Acknowledgements

algorithms that achieve constant-factor approximation guarantees. In the submodular case, the

result on the maximum number of allowed removals is improved to τ = o(k) in comparison to

the previously known τ = o(
√
k). In the non-submodular case, we obtain new guarantees in the

support selection and batch BO tasks. We empirically demonstrate the robust performance of our

algorithms in these, as well as, in data summarization and influence maximization tasks.

Key words: Bayesian optimization, Bandit optimization, Gaussian process, Submodularity,

Robust optimization, Regret bounds, Level-set estimation, Non-submodular optimization
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Résumé
Dans de nombreux systèmes d’apprentissage interactifs, la tâche principale peut être réduite à

l’optimisation séquentielle d’une certaine fonction. L’optimisation Bayesienne est un puissant

algorithme basé sur un modèle, qui effectue des évaluations de manière adaptive, et dont le but

est d’optimiser une fonction quelconque via une séquence de décisions. Dans de nombreuses

applications, il est essentiel d’effectuer ces decisions de manière robuste, que ce soit envers

des perturbations aléatoires ou non, des phénomènes temporels, ou encore un décalage entre

des simulations et la réalité. En tenant compte de ces exigences, les méthodes standard et

l’optimisation Bayesienne sont inadéquates. Dans cette thèse, nous considérons quatre directions

de recherche dans le but d’améliorer la prise de décision adaptive et robuste dans le cadre de

l’optimisation Bayesienne.

Dans un premier temps, nous étudions un problème similaire, qui est l’estimation des surfaces

de niveau ("Level-set estimation" ou LSE en anglais) à l’aide de processus Gaussiens. Alors que

le but de l’optimisation Bayesienne est de maximiser une fonction inconnue, le LSE a pour but de

trouver toutes les solutions "suffisamment bonnes". Nous proposons un algorithme efficace basé

sur des intervalles de confiance, et qui traite l’optimisation Bayesienne et LSE de manière unifiée.

Cette algorithme est efficace dans des cas qui sont difficiles à traiter par des algorithmes existants,

comme par exemple lorsque l’on inclut des coût ponctuels, que le bruit est non-uniforme, ou

encore dans le cas de multi-fidélités. Dans notre théorème principal, nous prouvons une garantie

théorique du regret prenant en compte ces aspects.

Dans un second temps, nous ajoutons une contrainte de robustesse à l’optimisation avec

processus Gaussiens : un adversaire peut perturber chaque mesure, et nous cherchons donc un

maximisateur robuste à ce genre de perturbation. Cette contrainte est utile, par exemple, dans les

cas où les fonctions utilisées durant l’optimisation et l’implémentation sont différentes. Nous

proposons pour cela un nouvel algorithme basé sur des intervalles de confiance robustes. Nous

établissons également des garanties théoriques pour le regret, ainsi qu’une borne inférieure

universelle, indépendante de l’algorithme. Nous démontrons expérimentalement que notre ap-

proche réussit constamment à trouver un maximisateur robuste, alors que l’algorithm standard

d’optimisation Bayesienne échoue.

Nous nous intéressons ensuite au problème d’optimisation avec processus Gaussiens dans

lequel la fonction à maximiser varie au cours du temps. Il existe en effet de nombreuses appli-

cations dans lesquelles l’objectif n’est pas statique. Nous modélisons pour cela la fonction a

maximiser par un processus Gaussien dont l’évolution obéit un simple modèle Markovien. Nous

proposons deux algorithmes basés sur des intervalles de confiance, avec la capacité d’"oublier"
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les données trop vieilles. Nous obtenons des bornes pour le regret, qui dépendent à la fois du

nombre d’evaluations, et de la vitesse à laquelle la fonction varie.

Enfin, nous considérons le problème de maximisation d’une fonction d’ensembles sous

contrainte de cardinalité k, dans le cas où un nombre d’éléments τ de l’ensemble choisi peuvent

être supprimés. Une application notable est l’optimisation Bayesienne groupée, où l’on doit

sélectionner un certains nombre d’expériences à effectuer, mais certaines d’entre elles peuvent

échouer. Nous nous concentrons sur le problème du pire cas, et considérons à la fois des fonctions

sous-modulaires (c’est-à-dire qui satisfont une notion naturelle de rendement décroissant), et

non sous-modulaires. Nous proposons des algorithms robustes qui fournissent des solutions avec

facteur d’approximation constant. Dans le cas sous-modulaire, le nombre maximal de suppres-

sions autorisées est amélioré à τ = o(k), en comparaison du résultat τ = o(
√
k) précédemment

connu. Dans le cas non sous-modulaire, nous obtenons de nouvelles garanties pour les tâches de

sélection de support et d’optimisation Bayesienne groupée. Nous démontrons empiriquement

l’aspect robuste de nos algorithmes dans ces tâches, ainsi que pour la synthèse de données et la

maximisation d’influence.

Mots clés : optimisation Bayesienne, optimisation bandit-manchot, processus Gaussiens, sous-

modularité, optimisation robuste, borne de regret, estimation des surfaces de niveau, optimisation

non sous-modulaire
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1 Introduction

The past years have witnessed significant progress in technologies that are based on data-driven

systems that interact with the environment, acquire information, reason and make decisions.

Recent technological advances include the developments of the first program to defeat a Go world

champion [SSS+17], agile robots that can learn complex behavior and operate in non-trivial

environments [HSL+17] and systems for adaptive data center management that reduce energy

costs [EG16], to name a few. Decision-making for self-driving cars has also generated significant

improvement in various operative capabilities following in several prototypes already driving on

our roads and streets [SAMR18]. In online advertising and recommendation systems, interactive

machine learning systems are used to automatically generate a personalized recommendation to a

user from a large pool of possibilities. Based on the users’ feedback, these systems can integrate

and utilize the newly acquired information and provide better recommendations for future

interactions. Similar machine learning systems with human feedback are also used to infer what

humans want, e.g., by being informed which of two proposed responses is preferred [CLB+17].

Interactive data-driven systems are also beginning to be introduced into other fields, e.g.,

medicine, astronomy, computational biology, chemistry, etc. New applications usually appear

with more complex requirements, specific types of constraints, as well as ever-growing decision

spaces. For instance, in chemical design, we seek to discover molecules that have some desirable

properties, and which can be the key to the discovery of a new drug or material. However,

the number of molecules with potential medical properties is enormous – estimated to be in

between 1023 and 1060 [GBWD+18]. An additional challenge is the fact that decisions are usually

costly (e.g., testing a new chemical compound requires running expensive simulations) while

the resulting observations can often be noisy (e.g., the outcome of running the same experiment

might vary). A significant challenge is how to automate the exploration of such and similar

spaces and locate promising candidates quickly. Fortunately, the design space in many real-world

problems is often structured, e.g., it is usually the case that similar molecules will have similar

properties and similar movies will be rated similarly by the user. Hence, the key to tackling such

problems lies in the ability of the systems to adaptively make decisions based on the previous

observations and current model, with the goal of reducing the number of expensive interactions.
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The greater need for adaptive data-driven systems that can perform in the real world tasks

has also introduced important additional requirements. When it comes to a significant number

of relevant techonologies, one of the requirements that is in focus is robustness. Failures,

unpredictable or unstable performance of such systems can often lead to considerable social

and economic consequences [Rec18]. As a result, it is important for the decisions they made to

be robust in the case of adversarial attacks, dynamic effects and temporal variations, parameter

perturbations, a mismatch between simulations and reality, etc. In various practical applications

it is beneficial to go beyond a single best decision, but discover multiple sufficiently good backup

solutions in the case of some of them result in failure. An essential question in all of these settings

is how to make robust decisions while still being able to guarantee strong theoretical performance

for our methods. In this dissertation, we study and address this general challenge by considering

specific tasks and problem formulations.

The central task in many interactive machine learning systems can often be formalized as

the iterative optimization of the unknown black-box function that represents some quantity of

interest. The only way to learn about the unknown objective is through bandit feedback, i.e.,

point evaluations. For example, in recommender systems, the user’s preferences are unknown,

and we learn about them by iteratively recommending items and observing the feedback; in

automatic chemical design, we regularly select molecules for testing, and we learn about their

properties by querying the expert or by running specific simulations. Decision making in these

settings corresponds to either adaptive experimentation with the goal of finding the best design,

or balancing between exploration (i.e., acquiring new information about the unknown quantity)

and exploitation (i.e., making decisions that are believed to be the best based on the previous

interactions) with the goal of cumulative maximization of the importance of choices.

As mentioned before, we can benefit from the fact that the design space is structured in

many real-world applications. A way to exploit this is to take the Bayesian perspective and

assume a prior model of the unknown function. Typically, a Gaussian process (GP) [RW06]

is used as a model when the central assumption is that adjacent observations should reveal

information about each other [SS98]. In this dissertation, we consider Bayesian optimization
(BO) – a powerful model-based framework for adaptive experimentation, where the primary

goal is the optimization of the unknown function via sequentially chosen decisions and ob-

servations. Since its introduction, BO has been applied in different fields, e.g., recommender

systems [VNDBK14], robotics [LWBS07], control and reinforcement learning [BSK16], environ-

mental monitoring [SKKS10], preference learning [GDDL], combinatorial optimization [BP18]

and many others. Perhaps, the most famous application is automatic hyperparameter tuning in

machine learning, where BO is used to automatically select the best model and its associated

hyperparameters [SLA12]. A great number of methods for BO (i.e. selection strategies that

utilize the model to guide the sequential search) have been developed over time [SSW+16]. One

popular algorithm is GP-UCB [SKKS10], which builds confidence bounds around the unknown

function and uses the upper confidence bound criterion to select its next decision. This idea

comes from the seminal work [LR85] on the multi-armed bandit problem, where this strategy is

used to balance between exploration and exploitation.
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Despite a significant number of methods for Bayesian optimization and experimentation,

numerous challenges remain. How can we perform adaptive experimentation in search for a design

that not only maximizes the unknown quantity but is also robust against adversarial perturbations?

How can one perform adaptive decision making to discover all "sufficiently good" design choices

instead of finding a single best solution alone? In many of the applications, the unknown quantity

is not static, but it varies with time. Besides the standard decision making dilemma of exploration

vs. exploitation, how can we further balance between forgetting vs. remembering of the acquired

data? Furthermore, how shall we choose which experiments to run (i.e., where to evaluate the

unknown function) in the case of point-wise costs and heteroscedastic noise (i.e., when querying

the unknown function at different points in the decision space leads to different costs and amount

of noise in observations)? How can we automatically choose experiments in a robust way in

the case some of them fail? These are some of the research questions that we consider in this

dissertation with the goal of enhancing both robust and adaptive decision making in BO and

related methods. Under most of these challenges, the standard BO methods become inadequate.

To tackle these questions, we propose various confdience-bound based algorithms that, despite

the lack of knowledge of the actual underlying function, are able to make decisions based on the

previous interactions and their confidence in the model.

Finally, in many real-world tasks, it is of interest to choose a set of decisions in every interaction.

However, what if some of the selected decisions/experiments fail? In many situations, we

do not have a reasonable prior distribution on how failures happen, or we require robustness

guarantees with a high level of certainty. In such case, protecting against worst-case failures is

essential. In this dissertation, we address this question by formalizing it as the combinatorial

optimization problem in which the goal is to choose a set of decisions (from a potentially large

pool) that maximize some objective value so that if some decisions result in failure, the value

degrades as little as possible. Finding a robust set of choices is not only of interest in adaptive

experimentation and the case when experiments can fail, but it can be essential in many important

machine learning applications. Some of the relevant problems where it is useful to select a

robust set of decisions include feature selection [KED+17], influence maximization [KKT03],

sensor placement [KSG08], data summarization [Mir17], when interpreting machine learning

models [RSG16], just to name a few. In many of these, the objective set function satisfies the

natural notion of diminishing returns – submodularity. In such cases and when decisions can fail,

the standard greedy algorithm [NW78] that is near-optimal in the non-robust setting can perform

arbitrarily badly. In this dissertation, we propose efficient algorithms for robust decision selection

that address this issue by exploiting a very simple idea: The key is to select decisions that will

admit a large objective value, but also a right number of redundant decisions that can "cover for"
the important ones in the case they fail.

1.1 Contributions

In this dissertation, we explore four research challenges related to robust and adaptive decision

making, with a particular focus on algorithms that provide strong theoretical guarantees:
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f

f(x∗)

(a) Unknown function f and its maximizer x∗

h

(b) Level sets

Figure 1.1: In BO the goal is to find x∗ alone (Figure 1.1a), while in LSE (Figure 1.1b) one seeks

to find all "sufficiently good" points, i.e., points for which f(x) is above the given threshold h.

1. Designing a versatile and cost-effective method for Bayesian optimization and level-set
estimation.

Bayesian optimization (BO) and level-set estimation (LSE) are related problems that are

typically studied in isolation. Bayesian optimization [SSW+16] provides a powerful framework

for automating experimentation and finds applications in robotics, environmental monitoring,

and automated machine learning, etc. One seeks to find the maximum of an unknown reward

function that is expensive to evaluate, based on a sequence of suitably-chosen decisions and their

noisy observations. Level-set estimation (LSE) [GCHK13] is closely related to BO, but instead

of seeking a maximizer, one seeks to classify the domain into points that lie above or below a

certain threshold. Finding the best solution alone, as is the case in BO, might not be sufficient in

applications where robustness or diversity of solutions is required. In such cases, LSE can be

used to find all “sufficiently good” solutions (see Figure 1.1 for an illustration).

Popular methods for BO include expected improvement (EI), probability of improvement (PI),

and Gaussian process upper confidence bound (GP-UCB) [SSW+16, SKKS10]. An algorithm

for level-set estimation with GPs is given in [GCHK13], which keeps track of a set of unclassified

points. These algorithms have theoretical guarantees and good computational complexity, but due

to their myopic nature in considering no more than a single step into the future, it is unclear how

to incorporate pointwise costs (i.e., a scenario in which different sampling locations are associated

with different costs) and several other settings. In contrast, so-called one-step lookahead BO

methods, entropy search (ES) [HS12], its predictive version (PES) [HLHG14] and minimum

regret search (MRS) [Met16] permit versatility with respect to costs [SSA13], heteroscedastic

noise [GWB97], and multi-task scenarios [SSA13]. Unlike the myopic algorithms, these are

computationally expensive and, to our knowledge, no theoretical guarantees have been provided

for these one-step lookahead algorithms. Hence, we seek to design a versatile, computationally

efficient and cost-effective algorithm with rigorous theoretical guarantees.

In Chapter 3, we present an algorithm, truncated variance reduction (TRUVAR), that addresses

Bayesian optimization and level-set estimation with Gaussian processes in a unified fashion.
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f(x∗
0)

f(x∗
ε )

f

(a) Unknown function f

min
δ∈Δε(x)

f(x+ δ)

(b) Robust objective

Figure 1.2: (a) A function f and its maximizer x∗
0; (b) for the adversarial budget ε = 0.06 and

distance function d(x,x′) = |x − x′|, the decision x∗
ε that corresponds to the local “wider”

maximum of f is the optimal ε-stable decision.

The algorithm greedily shrinks the total variance, up to a truncation threshold, within a set of

potential maximizers (BO) or unclassified points (LSE), which is updated based on confidence

bounds. TRUVAR is effective in important settings that are typically non-trivial to incorporate

into the standard myopic algorithms, such as pointwise costs and heteroscedastic noise. On

the other hand, compared to the one-step lookahead algorithms for BO, TRUVAR avoids the

computationally expensive task of averaging over the posterior and/or measurements, and comes

with rigorous theoretical guarantees for the two settings. Moreover, we present a new result in

the multi-fidelity setting where, while sampling, one can select from a number of noise levels

having associated costs. The cost-effectiveness of TRUVAR is demonstrated on both synthetic

and real-world data sets, where it is able to outperform the competitor methods while incurring a

significantly smaller sampling cost.

2. Designing a method for robust Bayesian optimization.

In many applications in which the goal is to optimize a black-box function, one is faced

with forms of uncertainty that are not accounted for by standard algorithms. In robotics, the

optimization is often performed via simulations, creating a mismatch between the model and the

true function; in parameter tuning, the function is similarly mismatched due to limited training

data; in recommendation systems, the underlying function is inherently time-varying, so the

returned solution may become increasingly stale over time; the list goes on. We address these

considerations by studying GP optimization with an additional requirement of robustness: The

returned point may be perturbed by an adversary, and we require the function value to remain as

high as possible even after this perturbation. This problem is of interest not only for attaining

improved robustness to uncertainty but also for other related max-min optimization settings.

In general, for a given fixed perturbation budget, the function value of the global maximum after

being adversarially perturbed might degrade significantly. We refer to the point that has the highest

function value after being adversarially perturbed (in the worst-case sense) as stable optimal

(see Figure 1.2). In such setting, all the BO strategies (e.g., [HS12, WJ17, SJ17a, RMGO18])

whose goal is to identify the global non-robust maximum can become inherently suboptimal.
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Figure 1.3: Two examples of time-varying reward functions. The location of the global maximum

changes significantly at distant times.

In Chapter 4, we introduce a variant of GP optimization in which the returned solution is

required to exhibit stability/robustness to an adversarial perturbation. We demonstrate the failures

of standard BO algorithms, and we introduce a new algorithm STABLEOPT that overcomes

these limitations. The algorithm is based on two distinct principles: optimism in the face of
uncertainty when it comes to selecting where to sample next, and pessimism in the face of
uncertainty when it comes to anticipating the perturbation of the selected point. We provide

a novel theoretical analysis characterizing the number of samples required for STABLEOPT to

attain a near-optimal robust solution, and we complement this with an algorithm-independent

lower bound. We provide several important variations of our max-min optimization framework

and theory, including the classical robust formulation, robust estimation, and group identification

problems. We experimentally demonstrate a variety of potential applications of interest on

real-world data sets, and we show that STABLEOPT consistently succeeds in finding a stable
maximizer where several BO and baseline methods fail.

3. Can we design "no-regret" methods in the case of time-varying rewards?

In the previous two research challenges, the unknown objective function was assumed to be

time-invariant, i.e., it was static and did not vary with time. However, in many practical appli-

cations, the function to be optimized varies with time: In sensor networks, measured quantities

such as temperature undergo fluctuations; in recommender systems, the users’ preferences may

change according to external factors; similarly, financial markets are highly dynamic. Studying

time-varying effects is of great importance in such applications.

In the time-invariant setting (i.e., classical setting), several different algorithms are known to be

"no-regret" (e.g., [SKKS10]). Simply put, for a sufficiently large time horizon, these algorithms

are guaranteed to find the global maximum. However, in the case of time-varying reward

functions, the maximum function value and its location could change drastically throughout the

time horizon. In such cases, the performance of these standard Bayesian optimization algorithms

may deteriorate, since these continue to treat stale data as being equally important as fresh data.
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Balancing between exploration and exploitation is not sufficient, and leads to the non-vanishing

regret performance of the standard algorithms. This initiates the study of the additional forgetting-
remembering dilemma and the development of algorithms that can exploit both spatial and

temporal correlations present in the reward function.

In Chapter 5, we take a novel approach to handling time variations, modeling the reward

function as a Gaussian process (GP) that varies according to a simple Markov model (as shown

in Figure 1.3). We prove that no algorithm can attain vanishing regret for any fixed function

variation rate. This motivates the study on how the regret jointly depends on the time horizon

and the rate at which the reward function varies. We develop two algorithms based on the upper

confidence bound strategy. The first, R-GP-UCB, completely forgets about the past data at regular

intervals. The second, TV-GP-UCB, instead forgets about old data in a smooth fashion. Our

main contribution comprises of novel regret bounds for these algorithms, providing an explicit

characterization of the trade-off between the time horizon and the rate at which the function

varies. We test the performance of the algorithms on both synthetic and real data and show

that R-GP-UCB is computationally more efficient while the gradual forgetting of TV-GP-UCB

performs favorably compared to the sharp resetting of R-GP-UCB. Moreover, both algorithms

significantly outperform the standard BO algorithms, since they treat stale and fresh data equally.

4. How can we efficiently select a robust set of experiments/decisions that maximize our
objective of interest, such that it degrades as little as possible if some of them fail?

In all the previous challenges, we considered the task of sequentially optimizing an unknown

function from point evaluations that require performing costly experiments. When a batch of

points is to be selected, this becomes the problem of subset selection, which we need to solve in

every round. In case that experiments can fail, protecting against worst-case failures of expensive

trials is of great importance. This challenge is not only associated with the robust experimentation,

but it also arises in other important machine learning applications where the goal is to select

a robust set of items that maximize some objective of interest. For instance, (i) in influence

maximization problems, a subset of the chosen users may decide not to spread the word about

a product; (ii) in summarization problems, a user may decide to remove some items from the

summary due to their personal preferences; (iii) in the problem of sensor placement for outbreak

detection, some of the sensors might fail; (iv) in the problem of feature selection, some selected

features might be missing at the test time. In situations where one does not have a reasonable

prior distribution on the elements removed, or where one requires robustness guarantees with a

high level of certainty, protection against worst-case removals becomes essential.

The problem can be formalized as the robust set selection problem in which we want to select a

set of items of size k to maximize some objective function such that the utility of the selected set

degrades as little as possible after the worst-case adversarial failure (i.e., removal) of τ of them.

We consider both the case when the objective function satisfies the natural notion of diminishing

returns (i.e., adding an item to a set is "more beneficial" if it is done earlier than later in the

selection process) – submodularity [KG12], and the case of non-submodular objectives [DK08].
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We address the former case in Chapter 6. A constant-factor approximation guarantee was given

in [OSU16] when the allowed number of removals is τ = o(
√
k). We solve a key open problem

raised therein, presenting a new and efficient Partitioned Robust (PRO) submodular maximization

algorithm that achieves the same constant factor guarantee for more general τ = o(k). Our

algorithm constructs partitions consisting of buckets with exponentially increasing sizes, and

applies standard submodular optimization subroutines on the buckets to construct the robust

solution. We numerically demonstrate the performance of PRO in data summarization [Mir17]

and influence maximization [KKT03] tasks, demonstrating gains over both the non-robust greedy

algorithm [NW78] and the algorithm of [OSU16].

We consider the case of non-submodular objectives in Chapter 7. We propose a simple and

practical algorithm OBLIVIOUS-GREEDY, and prove the first constant-factor approximation

guarantees for a broader class of non-submodular objectives. The obtained theoretical bounds

also hold in the linear regime, i.e., when the number of allowed removals τ is linear in k.

Our bounds depend on a few parameters including submodularity ratio and inverse curvature,

that essentially, characterize how close the objective is to being submodular and approximate

diminishing returns property of the objective, respectively. We provide a summary of these and

other useful parameters that can be used to characterize any monotone set function, and prove

some interesting relations between them.

The obtained relations allow us to provide bounds for these parameters for two important

non-submodular objectives including the variance reduction objective and the one used in sparse

support/feature selection problems. The variance reduction objective is the one used in the

TRUVAR rule (introduced in Challenge 1). While this objective is not submodular in general,

we show that constant factor guarantees can still be obtained and OBLIVIOUS-GREEDY can be

used at every round in Bayesian optimization to select a robust set of experiments efficiently. By

considering the sparse feature selection problem, we provide a novel connection between strong
convexity and weak supermodularity (i.e., the property that tells how close the objective is to being

supermodular). This result complements the one from [EKDN16] where the same connection is

shown between strong convexity and weak submodularity. This result can potentially enlarge the

number of applications where supermodular optimization and algorithms can be used. Finally, we

empirically demonstrate the robust performance of our algorithm by considering these objectives.

On various datasets, OBLIVIOUS-GREEDY consistently outperforms both robust and non-robust

algorithms in terms of the robust objective value, but also when it comes to the generalization

performance (in the feature selection problem) in the case of unseen data.
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1.2 Organization of the Thesis

The structure of this dissertation is as follows:

• In Chapter 2, we provide a brief introduction to Bayesian optimization. We review the

GP-UCB algorithm [SKKS10] and relevant theoretical results in BO. We proceed with a

short review on submodular functions and optimization. Finally, we focus on a specific

problem in robust submodular optimization and consider the previous work and algorithms.

• In Chapter 3, we study the unified and cost-effective approach to BO and LSE. We propose

a new algorithm TRUVAR and investigate its theoretical guarantees both in BO and LSE.

Other settings and their corresponding theoretical guarantees are also considered, including

pointwise costs, heteroscedastic noise, multi-fidelity, and the non-Bayesian setting.

• In Chapter 4, we introduce the problem of adversarially robust Gaussian process optimiza-

tion and propose a novel robust algorithm STABLEOPT. We study both theoretical and

empirical performance of our algorithm in this and other robust settings including robust

Bayesian optimization, robustness to unknown parameters, and group identification.

• In Chapter 5, we consider the problem of Gaussian process optimization when the unknown

function varies with time. We propose new algorithms TV-GP-UCB and R-GP-UCB

that can penalize the old data and study the setting-specific lower and upper regret bounds

that jointly depend on the time horizon and rate of variation.

• In Chapter 6, we investigate the problem of robust submodular maximization in the presence

of adversarial removals. We propose a novel robust algorithm PRO-GREEDY and address

a key question from [OSU16], that is, whether the constant factor approximation guarantee

therein can hold in the case of a greater number of allowed removals.

• In Chapter 7, we study the same problem as in Chapter 6 in the case when the objective

is non-submodular. We present OBLIVIOUS-GREEDY and analyze its approximation

guarantees in terms of the parameters that characterize set functions (e.g., submodularity

ratio). We investigate the bounds for these parameters in different important applications.

• In Chapter 8, we review the main contributions of each chapter in this disseration, and

provide various directions for future research.

We begin Chapters 3-7 by formally stating the considered problem followed by the main

algorithm, theoretical results and experimental evaluations. Chapter-specific related work and

main contributions are listed at the beginning of every chapter. In Chapters 3-7, we provide most

of the proofs in the subappendices at the end of each chapter.
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Chapter 1. Introduction

1.3 Notation

In this section, we outline definitions of the most commonly-used mathematical symbols in this

disseration.

We use R to denote the set of real numbers, and R+ to denote the set of positive real numbers.

The set of natural numbers is denoted by N, the set of positive natural numbers by N+, and the

set of integers by Z.

We use bold symbols for vectors and matrices, with the latter being capitalized, e.g., a and A.

To denote i-th entry of a vector we use subscript ai. We denote the transposes of a and A by aT

and AT , and if A is invertible, its inverse is denoted by A−1. The Euclidean norm of a vector

a is denoted by ‖a‖2, the sum of the absolute values of its entries by ‖a‖1, and the maximum

absolute value of its entries by ‖a‖∞. For a square n× n matrix A, we use det(A) to denote its

determinant and tr(A) to denote its trace. We use In to denote identity matrix of size n× n. For

a vector a, we write diag(a) for a diagonal matrix containing the elements of vector a on the

main diagonal. The inner product of two vectors is denoted with 〈·, ·〉. For two matrices A and

B of size n×n, the Hadamard product A ◦B results in a matrix C of size n×n, with elements

given by Ci,j = (A)i,j(B)i,j . For a matrix A, we use ‖A‖F to denote its Frobenius norm.

Let f(·) and g(·) be two functions defined on some unbounded subset of the real numbers.

We write f(x) = O(g(x)) if |f(x)| ≤ C|g(x)| for some C and sufficiently large x, and

f(x) = o(g(x)) if g(x) 	= 0 and limx→∞
f(x)
g(x) = 0. Similarly, we write f(x) = Ω(g(x)) if

|f(x)| ≥ C ′|g(x)| for some C ′ and sufficiently large x. We similarly use the notation O∗(·),Ω∗(·)
to denote asymptotics up to logarithmic factors.

The symbol ∼ means "distributed according to". We use P[·] to denote the probability of

an event. The indicator function of an event E is denoted by 1E . E[·] and Var[·] are used for

the expectation and variance of a random variable when the probability distribution is obvious

from the context, and Eq(x)[f(x)], Varq(x)[f(x)] when x ∼ q(x). Et[·] is used to denote the

expectation of a random variable with respect to its posterior distribution at time t. We use

H(X) to denote entropy, H(X|Y ) for conditional entropy, I(X;Y ) for mutual information

and D(P ||Q) for KL divergence. We use Φ to denote standard normal CDF. We write GP to

denote a Gaussian process distribution and f ∼ GP(μ(x), k(x,x′)) to denote that function f is

distributed according to a Gaussian process with mean μ(·) and kernel functions k(·, ·). After

observing t data points, we use μt(·) and σ2
t (·) to denote the posterior mean and variance of a

GP, and we use Kt to denote the kernel matrix for t noiseless observations.

For a set A, we write |A| to denote its cardinality, and 2A to denote its power set. For a

function f defined on sets, f(A|B) denotes the marginal gain of adding set A to set B, i.e.

f(A ∪B)− f(B). We use A \B to denote set difference. For an integer k > 0, we write [k] for

the set {1, · · · , k}. The floor and ceiling functions are denoted by �· and �·�, respectively. For a

vector a, we write supp(a) for the set {i : xi 	= 0}, and ‖a‖0 for |supp(a)|.
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2 Background Material

In this chapter, we present an overview of Gaussian process (GP) models that are frequently

used in Bayesian optimization (BO). Various methods for adaptive experimentation are discussed

together with the most common performance metrics. We provide a summary of the existing

theoretical results in BO that are most relevant to the work presented in the subsequent chapters

of this dissertation. In the second part of this chapter, we provide a short review of submodular

functions and the relevant results in submodular optimization. Finally, we discuss the robust

submodular formulation in which we need to choose a set of decisions under uncertainty that

some of them might result in failure.

2.1 Gaussian Processes (GPs)

In this section, we provide a brief overview of Gaussian process models. A more comprehensive

introduction can be found in [RW06, Section 2].

A Gaussian process over some input space D is a collection of dependent random variables

{f(x)}x∈D such that every finite subset of these random variables {f(xi)}ni=1, n ∈ N is jointly

Gaussian. Any GP is fully specified by its mean μ : D → R and kernel (covariance) function

k : D ×D → R, and hence it is denoted by GP(μ(·), k(·, ·)). Because GPs define a distribution

over functions, they are frequently used in nonparmetric and nonlinear regression to model an

unknown function. For f ∼ GP(μ(·), k(·, ·)), we have f : D → R and f(x) is Gaussian for

every x ∈ D, with mean μ(x) = E[f(x)] and variance k(x,x) = E[(f(x)− μ(x))2].

Typically, we use GPs as a prior model when the main assumption is that the function values

of nearby inputs should reveal information about each other [SS98]. We can model versatile

classes of functions by using different kernel functions (see Figure 2.1). An important class of

kernels is the class of stationary kernels. These kernels are translation invariant, meaning that

the dependence on x,x′ is only through their difference, i.e., k(x,x′) = k(τ ) for τ = x− x′.

11



Chapter 2. Background Material

(a) Samples from GP(0, kSE) (b) Samples from GP(0, kMat)

Figure 2.1: Example of functions sampled from zero mean GP with SE and Matérn kernel.

Different kernel functions can be used to model versatile classes of functions.

Two of the most commonly used stationary kernels in practice are squared exponential (SE)1 and

Matérn kernels:

kSE(x,x
′) = exp

(
−‖x− x′‖2

2l2

)
, (2.1)

kMat(x,x
′) =

21−ν

Γ(ν)

(√2ν‖x− x′‖
l

)
Jν

(√2ν‖x− x′‖
l

)
, (2.2)

where l denotes the length-scale, ν > 0 is an additional parameter that dictates the smoothness

(the smaller this parameter is, the rougher the sampled functions are) and J(ν) and Γ(ν) denote

the modified Bessel and Gamma functions, respectively ([RW06, Section 4.2.1]). Functions

sampled from SE kernel are infinitely differentiable almost surely. In the case of the Matérn

kernel, as its parameter ν → ∞ we recover the SE kernel. An overview of other kernel functions

that can be interesting in practical applications can be found in [Duv14, Chapter 2]. When it

comes to the mean function a usual assumption is that it is zero everywhere [RW06, Section 2.7].

We use GP(0, k) to denote a zero mean GP with kernel k.

Suppose f ∼ GP(0, k), and suppose we sample f at {x1, . . . ,xt} and observe {y1, . . . , yt}
where for every i ∈ [t]:

yi = f(xi) + zi and zi ∼ N (0, σ2).

By the GP property, for any x ∈ D with the corresponding value f(x), it holds yt = [y1, . . . , yt]
T

and f(x) are jointly Gaussian given {x1, . . . ,xt}:[
f(x)

yt

]
∼ N

(
0,

[
k(x,x) kt(x)

T

kt(x) Kt + σ2It

])
, (2.3)

Here, kt(x)
T =

[
k(x1,x), . . . , k(xt,x)

]
and Kt =

[
k(xt,xt′)

]
t,t′ ∈ R

t×t is the kernel matrix.

1This kernel is also known as Gaussian or Radial basis function (RBF) kernel.
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2.2. Bayesian Optimization

(a) Samples from prior (b) Samples from posterior (c) Posterior uncertainty

Figure 2.2: An illustration of Bayesian posterior updates in GPs. In (a), we show samples from

the GP prior. After receiving some (noisy) observations (black circles), posterior samples are

illustrated in (b). In (c), we show the posterior mean prediction (dashed curve) plus and minus its

3 standard deviations (both obtained via (2.4)). We observe that the uncertainty shrinks around

the observed points and is larger further away from observations.

By using the formula for the conditional distribution associated with a jointly Gaussian random

vector [RW06, Appendix A], one can show that conditioned on the observed data {(xi, yi)}ti=1,

the posterior process is again GP with the posterior mean and variance:

μt(x) = kt(x)
T
(
Kt + σ2I

)−1
yt,

σ2
t (x) = k(x,x)− kt(x)

T
(
Kt + σ2It

)−1
kt(x)

(2.4)

Therefore, for every x ∈ D, conditioned on {(xi, yi)}ti=1, the posterior distribution of f(x) is

Gaussian, i.e., N (μt(x), σ
2
t (x)). The Bayesian posterior mechanics are illustrated in Figure 2.2.

As can be observed in (2.4), the posterior mean and variance at some input can be computed

analytically in closed form. This property, and together with the ability to describe uncertainty

in the predictions, are the main reasons why GPs are frequently used in many machine learning

applications. The algorithms and theory developed in later sections will heavily rely on these

elegant features of GPs. In practice, Cholesky decomposition is used instead of directly inverting

the kernel matrix in (2.4) (see Algorithm 2.1 in [RW06, Section 2.2] for more details).

2.2 Bayesian Optimization

Bayesian optimization (BO) refers to a sequential model-based approach for optimizing an

unknown and usually multimodal reward function f : D → R over some input space D, where a

prior belief of the possible reward functions is prescribed. The unknown function is a black-box,

meaning that it can be only observed through so called bandit feedback, i.e., point evaluations

(no gradient information is available). We also assume that every function evaluation is costly.

Since its introduction, BO has successfully been applied to numerous applications, including

robotics [LWBS07], algorithm parameter tuning [SLA12], recommender systems [VNDBK14],

environmental monitoring [SKKS10], and many more.
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Chapter 2. Background Material

Algorithm 1 Bayesian Optimization Pseudocode

1: for t = 1, 2, . . . do
2: choose xt by optimizing some acquisition (i.e., auxiliary) function ϑ(·):

xt ∈ argmax
x

ϑ
(
x; {xi, yi}t−1

i=1

)
3: observe the objective function sample yt at xt

4: augment data and update probabilistic model

The main idea in BO is to sequentially acquire data and refine the prescribed reward function

model via Bayesian posterior updates. The overall procedure is given in Algorithm 1. We proceed

by explaining the three main components: a probabilistic model, an acquisition function (i.e.,

auxiliary function) and a performance metric.

When it comes to the model, the most common option is to use a Gaussian process prior to

model the unknown reward function, that is to assume f ∼ GP(0, k). In practice, the parameters

of the GP kernel function can be learned from the observed data via the marginal likelihood

approach or sampling procedures (see [RW06, Section 5]). Given such model, the procedure

develops in time steps (see Algorithm 1), where at every time step t, the unknown function is

sampled at a point xt, and the corresponding observation yt is received. By aggregating a new

data pair (xt, yt), the model is updated via Bayesian posterior updates (outlined in (2.4)) by using

all the previously collected data {xi, yi}ti=1.

An acquisition function ϑ : D → R, is a surrogate function that makes use of the posterior

model to guide the sampling procedure. It is usually designed to balance between exploration and

exploitation, i.e., it has high values where the uncertainty of the model is large (corresponding to

exploration), and/or where the prediction of the model is high (exploitation). At every time step,

the acquisition function is optimized and the resulting point xt is the one where f is sampled at.

Acquisition functions are usually multimodal and potentially non-trivial to optimize. The

central assumption in BO is that f is expensive and/or time-consuming to evaluate, so that the

overhead that comes with the optimization of the acquisition function is significantly cheaper. For

example, when tuning complex machine learning systems, one evaluation of f might correspond

to training the system for a single hyperparameter configuration on a huge dataset, which might

require days to finish. On the other hand, acquisition functions are defined on the posterior

model, and hence to optimize them we do not require additional evaluations of f . An important

practical aspect is the global optimization of the acquisition function when the domain is compact

D ⊂ R
d (in contrast, when D is finite this task is easier). Various global optimization solvers

are used for this problem in practice (see [SSW+16, V.B] for more details). We note that in

most of the theoretical results in BO, it is assumed that the kernel function is perfectly known

and that the auxiliary optimizer finds the global maximum of the acquisition function (some of

these assumptions are relaxed in, e.g., [WdF14],[WSJF14] and [SJ17a]). For more details on the

practical aspects of BO, we refer the reader to the survey [SSW+16].
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2.2. Bayesian Optimization

(a) t = 5 (b) t = 31

(c) t = 6 (d) t = 7 (e) t = 8

(f) t = 9 (g) t = 10 (h) t = 11

(i) t = 12 (j) t = 13 (k) t = 14

Figure 2.3: Demo run of GP-UCB: We start GP-UCB after 5 samples are collected (see 2.3a).

We observe in 2.3b that after some number of rounds the sampling is focused around the maximum.

At every time step, GP-UCB selects a point with the highest upper confidence bound. We show

some intermediate steps in 2.3c– 2.3k.

Methods for BO

One of the most popular acquisition functions is based on the so-called principle of optimism in the
face of uncertainty. Simply put, despite the lack of knowledge in what x is the best, the idea is to

construct an optimistic guess as to how good f(x) for every x ∈ D is and pick x with the highest

guess. This idea dates back to the seminal work [LR85] on the multi-armed bandit problem

where the upper confidence bound criterion has been used to balance between exploration and

exploitation. Following the same approach, the Gaussian Process Upper Confidence Bound
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Chapter 2. Background Material

Algorithm 2 GP-UCB [SKKS10]

Input: Domain D, GP prior (μ0, σ0, k)

1: for t = 1, 2, . . . do
2: Choose

xt ∈ argmax
x∈D

μt−1(x) + β
1/2
t σt−1(x)

3: Observe yt = f(xt) + zt
4: Update posterior according to (2.4) to obtain μt(·) and σt(·)

(GP-UCB) algorithm [SKKS10] chooses a point with the highest upper confidence bound,

xt = argmax
x∈D

μt−1(x) + β
1/2
t σt−1(x)︸ ︷︷ ︸

ϑUCB(x)

,

where βt is a parameter controlling the level of exploration performed, μt−1(·) and σt−1(·) are

the posterior mean and variance computed via (2.4) based on the observations made prior to

time step t. Intuitively, μt−1(·) is the current estimate of f , while σt−1(·) is associated with

its uncertainty. GP-UCB balances between exploitation and exploration: The first term μt−1(·)
encourages exploitation by favoring points with high posterior mean, while the second term

β
1/2
t σt−1(·) is responsible for exploration, i.e. by favoring points with high level of uncertainty.

This is illustrated in Figure 2.3, where a few iterations of GP-UCB together with the sampled

points are shown. Finally, the exploration parameter βt is set such that the true function f lies

within the confidence bounds
[
μt−1(·)± β

1/2
t σt−1(·)

]
for every t with high probability (see

Section 2.2.1 for details). We outline the complete pseudocode of GP-UCB in Algorithm 2.

Besides GP-UCB, other popular approaches include the following:

• Probability of Improvement (PI): This strategy was discovered very early in [Kus64]. It

can be interpreted as favoring points that can improve upon the given target value ξt:

xt = argmax
x∈D

{
P[f(x) > ξt] := Φ

(
μt−1(x)− ξt

σt−1(x)

)}
,

where Φ is a standard normal CDF. Different heuristics exist that provide guidance on how

ξt should be set. One way is to set ξt to the best-observed value so far. If it is not chosen

"correctly", this causes PI to exploit aggressively and not find the maximizer [SSW+16].

• Expected Improvement (EI): EI [SSW+16] chooses

xt = argmax
x∈D

Et[(f(x)− ξt)1{f(x)>ξt}],

where Et[·] denotes averaging with respect to the posterior distribution at time t, and ξt is the

parameter discussed in PI. Since the posterior is Gaussian, f(x) ∼ N (μt−1(x), σ
2
t−1(x)),

the expectation can easily be expressed in closed form.

16



2.2. Bayesian Optimization

• Entropy Search (ES): The ES algorithm [HS12] seeks to minimize the uncertainty of the

maximizer x∗. It is given by the following rule:

xt = argmax
x∈D

H[pt−1(x
∗)]− Ept−1|x(y)[H[pt−1|(x,y)(x∗)]], (2.5)

where H[p(x)] =
∫
D p(x) log 1

p(x)dx denotes the differential entropy, pt−1(x
∗) and

pt−1|(x,y)(x∗) are the posterior distributions over the unknown maximizer x∗ given all

the sampling locations and their observations up to time t, and in the later case, given an

additional data pair (x, y). The averaging is over the distribution pt−1|x(y) of the random

variable y, which is Gaussian with mean μt−1(x) and variance σt−1(x)
2 + σ2. Since

the exact evaluation of the ES rule is intractable, it is approximated using Monte Carlo

techniques to average with respect to the posterior distribution and the observations.

The previously considered methods EI, PI and GP-UCB, are myopic in nature, i.e., they

all select the currently best point and ignore its impact on the future selection steps. On the

other hand, ES is a representative of the one-step lookahead methods, as it considers how the

selection of a point x (together with its possible observations) would change the uncertainty

of the maximizer x∗. While one-step lookahead methods are computationally more expensive,

they allow for some important settings (e.g., pointwise costs) that are typically non-trivial to

incorporate into the myopic algorithms (see Chapter 3 for more details).

We note that recently several additional methods for BO have also been proposed, e.g. [FPD08,

HLHG14, Met16, WJ17, RMGO18], etc. In this dissertation, we will mostly focus on the

GP-UCB algorithm due to its simplicity and theoretical properties.

Regret

The third component in our modular view of BO is the performance metric. Same as in the

multi-armed bandit literature [BCB12], we use regret to measure optimality of a sequence of

decisions. Let x∗ be the maximizer of the unknown function (it needs not be unique). We

consider two widely considered performance metrics:

• Cumulative regret: Let xt denote the point sampled by the algorithm at time t. At the

end of T rounds, the cumulative regret incurred by the algorithm is given by

RT =

T∑
t=1

(f(x∗)− f(xt)). (2.6)

• Simple regret: At the end of T rounds, an additional point x(T ) is reported, and the simple

regret incurred is:

r(T ) = f(x∗)− f(x(T )). (2.7)

Simple regret is a useful performance metric when the goal is to find the single best design.
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Chapter 2. Background Material

For example, in the model selection task we want to discover the best set of hyperparameters to

use as the input to our learning algorithm. It is also worth noting that the strategy for reporting

x(T ) can be different from the strategy that is used to sample points at every time step. Cumulative

regret, on the other hand, is typically of interest in applications where the relevance of decisions

that we make at every time step is important (i.e., it encourages exploitation). For instance, when

iteratively recommending items to a user, every recommendation should be up to the user’s liking.

A desired asymptotic property of an algorithm is to be no-regret, which means:

limT→∞
RT

T
= 0,

implying that an algorithm should only incur sub-linear cumulative regret, i.e. RT = o(T ).

Simply put, this property means that for a sufficiently large time horizon the algorithm can

discover an optimal point. If the reported x(T ) in the simple regret is obtained via

x(T ) = argmax
x∈{x1,...,xT }

f(x), (2.8)

then r(T ) ≤ RT
T . Hence, in this case, the bounds on the average cumulative regret RT

T translate

into the convergence rates for GP optimization. Note that the reporting strategy from (2.8), can

only be executed by an algorithm in the noiseless setting where the true values of the unknown

function are observed. In the setting where the observations are noisy, the used reporting strategies

are slightly different. One popular option in such case is to report the point (among the sampled

points) that has the highest posterior mean in the final round.

Both cumulative and simple regret are standard performance criteria used in the bandit optimiza-

tion literature (e.g., [BCB12]). Cumulative regret is a measure used in the classical multi-armed
bandit problem (MAB) to evaluate the performance of the exploration/exploitation algorithms.

Simple regret is, on the other hand, the performance criteria used in the related problem of best
arm identification [AB10, KCG16]. The links between these two notions of regret are studied

in [MBS09], and the algorithms designed to optimize cumulative regret are frequently used to

solve the best arm identification problem [JN14]. One perspective on BO is that it refers to the

group of bandit optimization methods in which a prior distribution over the unknown reward

function is assumed. In this dissertation, we sometimes refer to our problem as Gaussian process
bandit optimization when the goal is to optimize the cumulative regret.

2.2.1 A Review of Theoretical Results in GP Optimization

In this section, we present the main theoretical results from [SKKS10], which are relevant to

the work presented in this dissertation. We consider both Bayesian and non-Bayesian settings

and their corresponding assumptions (Table 2.1). In the subsequent chapters, we will most often

consider both settings for our problems.
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2.2. Bayesian Optimization

Bayesian setting

In the Bayesian setting, we assume that the unknown function is random and distributed according

to a GP, i.e., f ∼ GP(0, k). This assumption (setting) is precisely the one considered in the

previous section. Before stating the regret bounds for the GP-UCB algorithm in this setting, we

introduce the quantity that characterizes the complexity of a GP optimization problem.

Assume f ∼ GP(0, k) and k(x,x) ≤ 1 for every x ∈ D, i.e., the variance is bounded at

every x in the input space D. The latter assumption holds for both SE and Mátern kernels, and

in general, allows for regret bounds to be scale-free2. We consider the noisy setting, that is,

when querying f at some point x ∈ D, we receive a noisy observation y = f(x) + z where

z ∼ N (0, σ2) is i.i.d. Gaussian noise.

Mutual information. Let I(X;Y ) denote the mutual information [CT01]. The informative-

ness of a set of sampling points S = {x1, · · · ,xT } in the case of a GP model with Gaussian

observational noise, is measured by the mutual information between f and corresponding obser-

vations yS = (y1, · · · , yT ), and is given by:

I(yS ; f) = I(yS ;fS) =
1

2
log det

(
IT + σ−2KT

)
, (2.9)

where fS = (f(x1), · · · , f(xT )), KT = [k(x,x′)]x,x′∈S is the kernel matrix of size T×T , and

IT is the identity matrix of the corresponding size. Hence, the maximum amount of information

that any set of T noisy samples yS = (y1, · · · , yT ) can reveal about f ∼ GP(0, k) is given by

γT = max
{x1,...,xT }⊂D

1

2
log det

(
IT + σ−2KT

)
, (2.10)

We refer to γT as the maximum information gain. As shown in [SKKS10], when D ⊂ R
p is

compact and convex, for the SE kernel, it holds

γT = O
(
(log T )p+1

)
, (2.11)

and for the Matérn kernel with parameter ν, we have

γT = O∗
(
T

p(p+1)
2ν+p(p+1)

)
. (2.12)

We will make use of these bounds ((2.11) and (2.12)) in the subsequent chapters, as the maximum

information gain will also govern the obtained regret bounds.

Next, we state the regret bounds that hold for the GP-UCB algorithm in the Bayesian setting

in the case of finite D.

Regret bounds. The following confidence lemma is the key for obtaining the regret bounds.

2If k(x,x) ≤ c for some constant c ≥ 1 it can be reduced to the unit setting by dividing all samples by
√
c.
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Setting Bayesian non-Bayesian

Assumption f ∼ GP(0, k) f is arbitrary with ‖f‖k ≤ B

Table 2.1: Bayesian and non-Bayesian settings and their correponding assumptions. The kernel

function k is typically assumed to be known in both settings.

Lemma 2.2.1 ([SKKS10]). For each t, define βt = 2 log |D|t2π2

6δ . With probability at least 1− δ,

we have for all x and t that |f(x)− μt−1(x)| ≤ β
1/2
t σt−1(x).

Hence, the confidence parameter βt is chosen to ensure that f remains with high probability

within the confidence bounds over the run of the algorithm, i.e., f(x) ∈
[
μt−1(x)± β

1/2
t σt−1(x)

]
for every x ∈ D and t ∈ {1, · · · , T}.

Theorem 2.2.1 ([SKKS10, Theorem 1]). Let D be a finite set, f ∼ GP(0, k) and δ ∈ (0, 1).
When running GP-UCB with GP(0, k), known noise model, and βt set according to Lemma 2.2.1,
the following regret bound holds for every T ≥ 1 with probability at least 1− δ:

RT ≤
√
C1TβTγT (2.13)

where C1 =
8

log(1+σ−2)
.

Under some regularity assumptions (see [SKKS10, Theorem 2]), the regret bound is of the same

form (2.13) in the case D ⊂ [0, 1]p(p ∈ N); in such case we run GP-UCB with βt ∝ p log(tp/δ).

By substituting the bounds obtained for γT (e.g., (2.11)) in the regret bound (2.13), it can be

observed that GP-UCB attains sub-linear cumulative regret, i.e., limT→∞RT
T = 0.

Non-Bayesian Setting

Previously, we assumed that f is random and distributed according to GP(0, k) with some known

kernel function k. In this section, we assume that the reward f is an arbitrary fixed function.

Obtaining vanishing regret bounds for an arbitrary and unknown reward function is impossible in

general, and hence, further assumptions are needed. The relation between GP kernel functions

and the notion of the reproducing kernel Hilbert space (RKHS) [RW06, Section 6.1] motivates

the smoothness assumption that we make in this section.

Assume that the input space D is compact, and the unknown function f : D → R belongs to

the RKHS Hk(D) of functions induced by the known kernel function k : D × D → R, with

k(x,x) ≤ 1 for every x ∈ D. Moreover, we assume that f has a small RKHS norm which,

we will see below, enforces smoothness of f . Formally, we assume B is a known constant and

f ∈ Fk(B) where

Fk(B) = {f ∈ Hk(D) : ‖f‖k ≤ B}. (2.14)
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2.2. Bayesian Optimization

The RKHS Hk(D) is a Hilbert space of real functions uniquely determined by the kernel k

(the opposite also holds), with an inner product 〈·, ·〉k that obeys the reproducing property:

f(x) = 〈f, k(x, ·)〉 for all f ∈ Hk(D). It also holds that for every x ∈ D, k(x,x′) as a function

of x′ belongs to Hk(D). The induced RKHS norm, ‖f‖k = 〈f, f〉1/2k , measures the smoothness

of every f ∈ Hk(D) with respect to the kernel function k. This can be observed by the following

relation that holds for every f ∈ Hk(D) and x,x′ ∈ D:

|f(x)− f(x′)| = |〈f, k(x, ·)− k(x′, ·)〉k| ≤ ‖f‖k‖k(x, ·)− k(x′, ·)‖k,

which follows by the reproducing property and the Cauchy-Schwartz inequality. In the same way

that different kernel functions dictate smoothness of GP samples (see Figure 2.1), they also lead

to different penalization as measured by the corresponding RKHS norm ‖ · ‖k.

In [SKKS10], it is shown that when f is in Fk(B), we can use the GP-UCB algorithm with

the prior GP(0, k) as the input, and perform the same Bayesian posterior updates. In this case,

we are running the algorithm with a misspecified3 prior. The key is in the fact that the assumption

f ∈ Fk(B) allows for setting the confidence parameter βt to ensure that f remains within the

confidence bounds (that are based on the GP posterior) with high probability during the run of

the algorithm. Hence, in this setting as well, we can obtain the confidence lemma analogously to

the Bayesian setting (Lemma 2.2.1) for appropriately set βt.

Theorem 2.2.2 ([SKKS10, Theorem 3]). Let D be a compact set and f is in Fk(B), and assume
the observation noise is zero mean conditioned on the history and bounded by σ almost surely.
Choose δ ∈ (0, 1) and run GP-UCB with GP(0, k), Gaussian noise model N (0, σ2), and
βt = (2B + 300γt log

3(t/δ)). With probability at least 1− δ we have

RT ≤
√
C1TβTγT , (2.15)

for every T ≥ 1, where C1 =
8

log(1+σ−2)
.

Compared to the Bayesian setting, the regret bound is of the same form (2.13) except for the

change in the confidence parameter βT . By substituting its value, the regret bound is

RT = O∗
(√

TBγT + Tγ2T

)
. (2.16)

In the case of the SE kernel, after replacing γT in (2.16) with its upper bound from (2.11), we

observe that GP-UCB also attains sub-linear cumulative regret in this setting.

We conclude this section by mentioning that other aspects (e.g., robust, contextual and time-

varying) of Bayesian optimization and its related problems (e.g., level-set estimation) will be

overviewed in the subsequent relevant chapters.

3Because the misspecified prior is used, the authors in [SKKS10] also refer to this setting as agnostic.
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Chapter 2. Background Material

2.3 A Review of (Robust) Submodular Maximization

We are motivated by the problem in which we seek to select a robust set of experiments in the

case that some of them might result in failure. In this setting, we are uncertain about which

experiments will fail, and hence, we need to make a robust decision when choosing which of them

to run. This problem is combinatorial in nature, and while discrete combinatorial optimization

problems frequently appear in machine learning, they are often NP-hard even to approximate.

In the case of a set objective function that satisfies a natural notion of diminishing returns –

submodularity, we can efficiently perform optimization in several different problem formulations

and obtain strong theoretical guarantees.

Submodular objectives (to be defined shortly) appear in many applications of interest including

influence maximization [KKT03], data summarization [Mir17], sensor networks [KSG08], active

learning [WIB15], just to name a few. Another example is the mutual information I(yS ,fS)

(cf. (2.9)), which we used in the previous section to measure the informativeness of a set of

experiments S (sampling locations) in the case of a GP model and noisy observations. It turns

out that this set function f(S) = I(yS ,fS) also satisfies submodularity [KG05a], which allows

for efficient approximate optimization.

We start this section by introducing submodular functions, and then we look at two submodular

optimization problems, namely, submodular maximization subject to a cardinality constraint and

the submodular covering problem. An essential difference between this and the previous sections

is that now our objective set function is known and we can evaluate it (i.e., obtain its true value)

for any set of items. Furthermore, we introduce the robust submodular maximization problem, in

which our goal is to protect against worst-case adversarial removals/failures [KMGG08].

Submodularity

Let V be a ground set of items with cardinality |V | = n, e.g., all the different experiments that

we can choose to run. Consider a set function f : 2V → R defined on V that quantifies the

utility of every set S ⊆ V . For example, this function can quantify how informative each set

of experiments is with respect to the experimentally measured quantity. We use the following

notation to denote the marginal gain in the function value due to adding the elements of a set

S ⊆ V to the set P ⊆ V :

f(S|P ) := f(S ∪ P )− f(P ).

In the case that S is a singleton of the form {v}, we adopt the shorthand f(v|S).

Submodular set functions satisfy a natural notion of diminishing returns. Intuitively, this means

that the gain that we get in terms of the submodular objective value by adding an item earlier is at

least as high as adding it later in the selection process. The following definition of submodular

functions captures this intuition.
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2.3. A Review of (Robust) Submodular Maximization

Definition 2.3.1 (Submodularity). A set function f : 2V → R is said to be submodular if for any
sets S ⊆ P ⊆ V and any element v ∈ V \ Y , it holds that

f(S ∪ {v})− f(S) ≥ f(P ∪ {v})− f(P ). (2.17)

This can equivalently be written as f(v|S) ≥ f(v|P ). We refer to f as being modular in

the case the previous definition holds with f(v|S) = f(v|P ). In this disseration, we will only

consider monotone set functions meaning that for all sets S ⊆ P ⊆ V we have f(S) ≤ f(P ).

Submodular Maximization and Coverage

In this section, we consider the two related problems submodular maximization and submodular
covering, both of which are known to be NP-hard in general [KG12].

In the first problem, the goal is to maximize a normalized4 monotone submodular function

f(·) subject to a cardinality constraint k. For a fixed k we want to find a set S ⊂ V that solves

S ∈ argmax
S⊆V,|S|≤k

f(S). (2.18)

For instance, in experimental design, this problem amounts to finding the set of k most informative

experiments, and in influence maximization, it corresponds to finding k most influential users in

the social network.

The following simple GREEDY algorithm starts with the empty set (S0 = ∅), and then at every

iteration adds the element with the highest maginal gain5 f(v|S), that is,

Si = Si−1 ∪ {argmax
v∈V

f(v|S)}, (2.19)

provides a constant factor approximation guarantee for the problem in (2.18). This finding is a

celebrated result from [NWF78], which we formalize in the following theorem.

Theorem 2.3.1 ([NWF78]). Let f : 2V → R+ be a monotone submodular function, and let
OPT(k, V ) denote the optimal solution of size k, i.e.,

OPT(k, V ) ∈ argmax
S⊆V,|S|≤k

f(S).

Let Sk be the set of size k obtained via GREEDY (2.19). Then it follows,

f(Sk) ≥ (1− 1/e)f(OPT(k, V )). (2.20)

4We say a set function is normalized if f(∅) = 0.
5We break ties arbitrarily in the case they occur.
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S f(S) minv∈S f(S \ v)
∅ 0 0

{s1} n 0
{s2} ε 0
{s3} n− 1 0

{s1, s2} n+ ε ε
{s1, s3} n n− 1
{s2, s3} n ε

Table 2.2: Function f used to demonstrate that GREEDY can perform arbitrarily badly.

In the case that we run GREEDY for some number of iterations l 	= k (l ∈ N+), then the result

from the previous theorem becomes [KG12]: f(Sl) ≥ (1−e−
l
k )f(OPT(k, V )). Furthermore, for

general submodular objectives, it holds that no algorithm that is allowed to evaluate the objective

at a polynomial number of sets cannot improve upon the obtained (1 − 1/e)-approximation

factor [NWF78].

The second related problem that we consider is the submodular covering problem in which

we seek to find a subset of the smallest size such that its utility is above some given threshold h.

Formally, we wish to solve the following:

S ∈ argmin
S⊆V

|S| subject to f(S) ≥ h, (2.21)

where h is some utility threshold in [0, f(V )]. In the budgeted version of the submodular

covering problem [KG05b] we are given a cost function c : 2V → R+ and our goal is to instead

minimize the cost c(S) associated with the set S subject to f(S) ≥ h. We consider this problem

in Chapter 3 in the context of BO, where our objective is to select a set of most informative

experiments (i.e., sampling points) but whose cost is as small as possible.

The following theorem characterizes the performance of the GREEDY algorithm when applied

to the submodular covering problem in (2.21).

Theorem 2.3.2 ([Wol82]). Consider a monotone submodular function f : 2V → N. Given some
threshold h ∈ [0, f(V )], let OPTh ⊆ V denote the smallest size set such that f(OPTh) ≥ h. Let
S be the first set obtained via GREEDY in (2.19) such that f(S) ≥ h. In such case, the size of the
solution set S can be bounded as follows:

|S| ≤
(
1 + lnmax

v∈V
f({v})

)
|OPTh|.

We refer the reader to [KG12] for more details on submodular functions and optimization.
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Robust Submodular Optimization

The following robust version of the problem in (2.18) was introduced in [KMGG08]:

max
S⊆V,|S|≤k

min
E⊆S,|E|≤τ

f(S \ E), (2.22)

where f : 2V → R+ is a monotone submodular function. We refer to τ as the robustness
parameter, representing the size of the subset E that is removed from the selected set S. Our

goal is to find a set S such that it is robust upon the worst-case adversarial removal of τ elements,

i.e., after the removal, the objective value should remain as large as possible. For τ = 0, the

robust problem reduces to the non-robust submodular maximization problem in (2.18).

As mentioned before, this problem is of interest when we want to select a set of the most

informative experiments that are costly to run and when some number of them might fail. In the

case that we do not have any prior information on how experiments might fail, protecting against

the worst-case failure becomes essential.

The GREEDY algorithm, which is near-optimal for the non-robust problem in (2.18) (Theo-

rem 2.3.1) can perform arbitrarily badly for Problem (2.22). As an elementary example, let us

fix ε ∈ [0, n − 1) and n ≥ 0, and consider the non-negative monotone submodular function

given in Table 2.2. For k = 2, the GREEDY algorithm selects {s1, s2}. The set that maximizes

minv∈S f(S \ v) (i.e., τ = 1) is {s1, s3}. For this set, minv∈{s1,s2} f({s1, s2} \ v) = n − 1,

while for the greedy set the robust objective value is ε. As a result, the GREEDY algorithm can

perform arbitrarily worse. In our experiments on real-world data sets (see Section 6.3), we further

explore the empirical behavior of the greedy solution in the robust setting. Among other things,

we observe that the greedy solution tends to be less robust when the objective value largely

depends on the first few elements selected by the greedy rule.

In [KMGG08], the authors consider the following generalization of Problem (2.22):

max
S⊆V,|S|≤k

min
i∈{1,...,n}

fi(S), (2.23)

where {fi}ni=1 is a finite set of normalized monotone submodular functions.6 This problem is

inapproximable in general however, the authors propose a bi-criteria approximation algorithm

SATURATE which, when applied to Problem (2.22), returns a set of size k(1+Θ(log(τk log n)))

and whose robust objective is at least as good as the optimal size-k set. SATURATE requires a

number of function evaluations that is exponential in τ , making it very expensive to run even for

small values.

In [OSU16], the authors consider the robust formulation in (2.22), and provide the first

efficient algorithm with constant 0.387-factor approximation result, valid in the case that the

maximum number of allowed removals (i.e., the budget of the worst-case adversary) is τ = o(
√
k).

6Note that the minimum of submodular functions is not submodular in general [KG12].
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S0

S1

𝜏

𝜏 log k 

k - |S0|  

1

Figure 2.4: Illustration of the solution set S = S0 ∪ S1 returned by the OSU algorithm. Each

square represents a single element of the solution set (k elements in total), and each row corre-

sponds to the elements selected in a single run of GREEDY. In the first τ runs of GREEDY, each

solution is of size τ log k; the union of the selected elements corresponds to the set S0. Finally,

in the last run of GREEDY, which corresponds to S1, the solution is of size k − |S0|.

Further on, we will refer to the algorithm proposed therein via the authors’ surnames as OSU.

The algorithm uses GREEDY as a sub-routine τ + 1 times. On each iteration, GREEDY is applied

on the elements that are not yet selected on previous iterations, with these previously-selected

elements ignored in the objective function. In the first τ runs, each greedy solution is of size

τ log k, while in the last run, the solution is of size k−τ2 log k (what remains until the cardinality

constraint k is satisfied). The union of all the obtained disjoint solutions leads to the final solution

set. The illustration of the solution set whose total size is k is given in Figure 2.4. We will

consider the problem in (2.22) further in Chapters 6 and 7, and propose new efficient algorithms.

More recently, in [KZK17], the authors have addressed the robust submodular maximization

problem with adversarial removals by proposing the two-stage algorithm that selects more than k

elements (i.e., it requires memory of size O(k+τ log k/δ2)) and achieves 1/2−δ approximation

guarantee (in expectation). In order to produce the solution of size k from the larger selected set,

their algorithm requires (as input in the second stage) the adversary to reveal the elements to be

removed. Hence, this is a substantially different setting than the previously considered one from

[OSU16]. Robust submodular maximization with respect to removals has also been considered

in the streaming [MBNF+17, MKK17], distributed [BMSC17a, KZK17] and sequential [TJP18]

settings. In addition, robust versions of submodular maximization have been applied to influence

maximization [HK16, CLT+16] and budget allocation problems [SJ17b]. The work of [PBW+16]

considers the problem in (2.23) for different types of submodular constraints. In [HS17], the

authors study the problem of maximizing a monotone submodular function under adversarial

noise. We conclude this section by noting that very recently, a couple of different works have

studied various related robust submodular problems [Udw17, Wil17, AHP+17, CLSS17].
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3 Versatile and Cost-effective Bayesian
Optimization & Level-set Estimation

Bayesian optimization (BO) and level-set estimation (LSE) are related problems that are typically

studied in isolation. In BO the goal is to find a maximizer of the unknown function alone, while

in LSE one seeks to find all "sufficiently good" points. In this chapter, we present a new algorithm

that addresses Bayesian optimization and level-set estimation with Gaussian processes in a unified
fashion. The proposed algorithm is cost-effective, and unlike the standard methods, it comes with

theoretical guarantees for the setting where sampling points incur different costs.

This chapter is based on the joint work with Jonathan Scarlett, Andreas Krause and Volkan

Cevher [BSKC16].

3.1 Introduction

Bayesian optimization (BO) [SSW+16] provides a powerful framework for automating design

problems, and finds applications in robotics, environmental monitoring, and automated machine

learning, just to name a few. One seeks to find the maximum of an unknown reward function that

is expensive to evaluate, based on a sequence of suitably-chosen points and noisy observations.

Numerous BO algorithms have been presented previously; see Section 2.2 for an overview.

Level-set estimation (LSE), e.g. [GCHK13], is closely related to BO, with the added twist that

instead of seeking a maximizer, one seeks to classify the domain into points that lie above or

below a certain threshold. This is of considerable interest in applications where solutions can

"fail", as well as in applications such as environmental monitoring and sensor networks, allowing

one to find all “sufficiently good” points rather than the best point alone.

In this chapter, we provide a unified treatment of the two via a new algorithm, Truncated Vari-
ance Reduction (TRUVAR), which enjoys theoretical guarantees, good computational complexity,

and the versatility to handle important settings such as pointwise costs, non-constant noise, and

multi-task scenarios. The main result of this chapter applies to the former two settings, and even

in the fixed-noise and unit-cost case, we refine the existing bounds via a significantly improved

dependence on the noise level.
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3.1.1 Problem Statement

We seek to sequentially optimize an unknown reward function f(x) over a finite domain D.1

At time t, we query a single point xt ∈ D and observe a noisy sample yt = ft(xt) + zt, where

zt ∼ N (0, σ2(xt)) for some known noise function σ2(·) : D → R+. In general, some points

may be noisier than others, in which case we have heteroscedastic noise [GWB97]. We associate

with each point a cost according to some known cost function c : D → R+. If both σ2(·) and

c(·) are set to be constant, then we recover the standard homoscedastic and unit-cost setting.

We model f(x) as a Gaussian process (GP) [RW06] having mean zero and kernel function

k(x,x′), normalized so that k(x,x) = 1 for all x ∈ D. The posterior distribution of f given the

points and observations up to time t is again a GP, with the posterior mean and variance [GWB97]:

μt(x) = kt(x)
T
(
Kt +Σt

)−1
yt (3.1)

σt(x,x)
2 = k(x,x)− kt(x)

T
(
Kt +Σt

)−1
kt(x), (3.2)

where kt(x) =
[
k(xi,x)

]t
i=1

, Kt =
[
k(xt,xt′)

]
t,t′ , and Σt = diag(σ2(x1), . . . , σ

2(xt)).

Note, that the posterior update rule is the same as the one in (2.4), except that here due to the

heteroscedastic noise assumption, σ2It is replaced with Σt. We also let σ2
t−1|x(x) denote the

posterior variance of x upon observing x along with x1, · · · ,xt−1.

We consider the standard goal in Bayesian optimization: After T time steps and for some

accuracy value ε ≥ 0, the goal is to report a point x(T ) such that

f(x∗)− f(x(T )) ≤ ε,

where x∗ ∈ argmaxx∈D f(x). We also refer to the difference f(x∗)− f(x(T )) as simple regret

r(T ) (see Section 2.2), and we seek to characterize time T to ε-simple regret, i.e., r(T ) ≤ ε.

A related problem to BO is level-set estimation [GCHK13]. While in BO we seek to find a

maximizer of the unknown function, in level-set estimation, we are interested in classifying the

domain into points that lie above or below a given threshold h. This means that after T time steps

and for some accuracy value ε ≥ 0, the goal is to report sets HT ⊂ D and LT ⊂ D such that for

every x ∈ HT and x ∈ LT the following holds f(x) > h and f(x) < h, respectively. Moreover,

the value of every remaining unclassified point should be at most ε above or below h.

3.1.2 Related Work

Three popular techniques for Bayesian optimization are expected improvement (EI), probability

of improvement (PI), and Gaussian process upper confidence bound (GP-UCB) [SSW+16,

SKKS10], each of which chooses the point maximizing an acquisition function depending directly

on the current posterior mean and variance (see Section 2.2 for more details on these methods).

1Extensions to continuous domains and non-Bayesian settings are also discussed in Section 3.6.
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In [CBRV13], the GP-UCB-PE algorithm was presented for BO, choosing the highest-variance

point within a set of potential maximizers that is updated based on confidence bounds. Another

relevant BO algorithm is BaMSOO [WSJF14], which also keeps track of potential maximizers,

but instead chooses points based on a global optimization technique called simultaneous online

optimization (SOO). An algorithm for level-set estimation with GPs is given in [GCHK13], which

keeps track of a set of unclassified points. These algorithms have theoretical guarantees and good

computational complexity, but it is unclear how best to incorporate important phenomena such

as pointwise costs and multi-task scenarios [SSA13]. The same is true for a heuristic for LSE

known as Straddle [BS08].

Entropy search (ES) [HS12] (Section 2.2) and its predictive version [HLHG14] choose points

to reduce the uncertainty of the location of the maximum, doing so via a one-step lookahead of

the posterior rather than directly using the current posterior. While this increases the computation,

it also permits versatility with respect to costs [SSA13], heteroscedastic noise [GWB97], and

multi-task scenarios [SSA13]. A recent approach called minimum regret search (MRS) [Met16]

similarly performs a look-ahead, but instead chooses points to minimize the regret. To our

knowledge, no theoretical guarantees have been provided for these one-step lookahead algorithms.

The multi-armed bandit (MAB) [BCB12] literature has developed alongside the BO literature,

with the two often bearing similar concepts. The MAB literature is far too extensive to cover here,

but we briefly mention some relevant variants. Extensive attention has been paid to the best-arm
identification problem [JN14], and cost constraints have been incorporated in a variety of forms

[MLG04]. The concept of “zooming in” to the optimal point has been explored [KSU08]. In

general, the assumptions and analysis techniques in the MAB and BO literature are very different.

3.1.3 Contributions

The main contributions of this chapter are:

• In Section 3.3, we present the first unified analysis of BO and LSE via a new algorithm

Truncated Variance Reduction (TRUVAR). Similarly to ES and MRS, the algorithm per-

forms a one-step lookahead that is highly beneficial in terms of versatility. However, unlike

these previous works, our lookahead completely avoids the computationally expensive task

of averaging over the posterior distribution and the observations.

• In contrast with the other one-step lookahead methods, ES and MRS, we provide theoretical

bounds (Section 3.3) for TRUVAR characterizing the cost required to achieve a certain

accuracy in finding a near-optimal point in the case of BO or in classifying each point in

the domain in the case of LSE.

• In the standard BO setting, we not only recover existing results in [GCHK13, CBRV13]

(also in Theorem 2.2.1), but we also strengthen them in Section 3.4 via a significantly

improved dependence on the noise level, with better asymptotics in the small noise limit.
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Confidence

Target
Selected point

Potential maximizers

Max. lower bound

(a) t = 5 (b) t = 6

(c) t = 7 (d) t = 8

Figure 3.1: An illustration of TRUVAR. In 3.1a, 3.1b, and 3.1c, three points within the set of

potential maximizers Mt are selected in order to bring the confidence bounds to within the target

range, and Mt shrinks during this process. In 3.1d, the target confidence width shrinks as a result

of the last selected point bringing the confidence within Mt to within the previous target.

• In Section 3.5, we provide a novel result for the multi-fidelity setting in which the algorithm

can choose the noise level (when sampling), each coming with an associated cost. We

also extend our results to the non-Bayesian setting in Section 3.6, and show that our regret

bounds in the case of the SE kernel nearly match the lower bounds from [SBC17].

• Finally, in Section 3.7, we compare TRUVAR to previous works on a variety of synthetic

and real-world data sets, finding it to perform favorably in a diverse range of settings.

3.2 Truncated Variance Reduction Algorithm

3.2.1 TruVaR for Bayesian Optimization

Our algorithm is presented in Algorithm 3, making use of the updates described in Algorithm 4.

TRUVAR keeps track of potential maximizers Mt. This is a set of points that still have a chance

of being maximizers according to the confidence bounds at time t. For t = 0 this set is initialized

to the whole domain M(0) = D (i.e., in the beginning, every point is a potential maximizer).
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3.2. Truncated Variance Reduction Algorithm

Algorithm 3 Truncated Variance Reduction (TRUVAR) for Bayesian Optimization [BSKC16]

Input: Domain D, GP prior (μ0, σ0, k), confidence bound parameters δ > 0, r ∈ (0, 1),
{β(i)}i≥1, η(1) > 0

1: Initialize the epoch number i = 1, target confidence η(1), potential maximizers M(0) = D
2: for t = 1, 2, . . . do
3: Choose

xt = argmax
x∈D

∑
x∈Mt−1

max

{
β(i)σ

2
t−1(x), η(i)

}
−∑

x∈Mt−1
max

{
β(i)σ

2
t−1|x(x), η(i)

}
c(x)

.

4: Observe the noisy function sample yt, and update according to Algorithm 4 to obtain Mt,

μt, σt, lcbt and ucbt
5: if maxx∈Mt β

1/2
(i) σt(x) ≤ (1 + δ)η(i) then

6: Increment i, set η(i) = r × η(i−1)

Algorithm 4 BO Parameter Updates for TRUVAR [BSKC16]

Input: Selected points {xt′}tt′=1 and observation {yt′}tt′=1, previous set Mt−1, parameter β
1/2
(i) .

1: Update μt and σt according to (3.1)–(3.2), and form the upper and lower confidence bounds:

ucbt(x) = μt(x) + β
1/2
(i) σt(x), lcbt(x) = μt(x)− β

1/2
(i) σt(x).

2: Set

Mt =

{
x ∈ Mt−1 : ucbt(x) ≤ max

x∈Mt−1

lcbt(x)

}
.

In the later rounds it is updated based on the confidence bounds depending on constants β(i),

ucbt(x) = μt(x) + β
1/2
(i) σt(x), lcbt(x) = μt(x)− β

1/2
(i) σt(x). (3.3)

At time t, the set of potential maximizers is given by:

Mt =

{
x ∈ Mt−1 : ucbt(x) ≤ max

x∈Mt−1

lcbt(x)

}
. (3.4)

The constraint x ∈ Mt−1 in (3.4) ensures that set of potential maximizers is non-increasing over

the course of the algorithm. Simply put, if a point has a smaller upper confidence bound than

the highest known lower confidence bound, then such a point cannot be a maximizer (given the

confidence bounds hold). The previously described updates are performed in Algorithm 4.

The algorithm proceeds in epochs (see Algorithm 3), where in each epoch i, it seeks to bring

the confidence β1/2
(i) σt(x) of points within the set Mt below a target value η(i) (hence, every epoch

i can last different number of rounds that are indexed with t). TRUVAR does this by greedily

minimizing the truncated sum of variances
∑

x∈Mt−1
max{β(i)σ2

t−1|x(x), η(i)} arising from

choosing the point x, along with a normalization and division by c(x) to favor low-cost points.
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Specifically, at every time step it chooses the point given by the following rule:

xt = argmax
x∈D

∑
x∈Mt−1

max

{
β(i)σ

2
t−1(x), η(i)

}
−∑

x∈Mt−1
max

{
β(i)σ

2
t−1|x(x), η(i)

}
c(x)

.

(3.5)

We note that the first term
∑

x∈Mt−1
max{β(i)σ2

t−1(x), η(i)} in the above rule is constant, i.e., it

does not depend on x. The truncation by η(i) in this decision rule means that once the confidence

of a point is below the current target value, there is no preference in making it any lower (until the

target is decreased). Once the confidence of every point in Mt is less than a factor 1 + δ above

the target value, the target confidence is reduced according to a multiplication by r ∈ (0, 1). An

illustration of the process is given in Figure 3.1, with details in the caption.

The choices of β(i), δ, and r are discussed in Section 3.7. As with previous works, the kernel is

assumed known in our theoretical results, whereas in practice it is typically learned from training

data [SKKS10]. Characterizing the effect of model mismatch or online hyperparameter updates

is an interesting direction for future work.

Some variants of our algorithm and theory are discussed in Section 3.7.3, including pure
variance reduction, the batch setting [CBRV13], and a few others.

3.2.2 TruVaR for Level-Set Estimation

In this section, we present an algorithm for level-set estimation that uses the same truncated

variance reduction acquisition rule (3.5). Our algorithm for level-set estimation is described in

Algorithm 5, making use of the updates described in Algorithm 6. The algorithm accepts level

set threshold h as an input. It keeps track of a sequence of unclassified points2 Mt, representing

points close to h. It also keeps track of the sets Ht and Lt, containing points believed to have

function values above and below h, respectively.

The precise definitions of these sets are:

Mt =
{
x ∈ Mt−1 : ucbt(x) ≥ h and lcbt(x) ≤ h

}
, (3.6)

Ht = Ht−1 ∪
{
x ∈ Mt−1 : lcbt(x) > h

}
, (3.7)

Lt = Lt−1 ∪
{
x ∈ Mt−1 : ucbt(x) < h

}
. (3.8)

The constraint x ∈ Mt−1 in (3.6)–(3.8) ensures that Mt is non-increasing with respect to

inclusion, and Ht and Lt are non-decreasing.

The precise performance criteria for the LSE setting is given in Definition 3.3.1 below;

essentially, after spending a certain cost we report a classification (LSE), i.e. sets Mt, Ht and Lt.

2We use Mt to denote the set of unclassified points in LSE, while in BO it denotes the set of potential maximizers.
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Algorithm 5 Truncated Variance Reduction (TRUVAR) for Level-Set Estimation [BSKC16]

Input: Domain D, GP prior (μ0, σ0, k), confidence bound parameters δ > 0, r ∈ (0, 1),
{β(i)}i≥1, η(1) > 0 and level-set threshold h

1: Initialize the epoch number i = 1, target confidence η(1), unclassified points M(0) = D,

H(0) = ∅, L(0) = ∅
2: for t = 1, 2, . . . do
3: Choose

xt = argmax
x∈D

∑
x∈Mt−1

max{β(i)σ2
t−1(x), η(i)} −

∑
x∈Mt−1

max{β(i)σ2
t−1|x(x), η(i)}

c(x)
.

4: Observe the noisy function sample yt, and update according to Algorithm 6 to obtain μt,

σt, lcbt and ucbt, as well as Mt,Ht and Lt

5: if maxx∈Mt β
1/2
(i) σt(x) ≤ (1 + δ)η(i) then

6: Increment i, set η(i) = r × η(i−1).

Algorithm 6 LSE Parameter Updates for TRUVAR [BSKC16]

Input: Selected points and observations {xt′}tt′=1; {yt′}tt′=1, previous sets Mt−1, Ht−1, Lt−1,

parameter β
1/2
(i) , and level-set threshold h.

1: Update μt and σt according to (3.1)–(3.2), and form the upper and lower confidence bounds

ucbt(x) = μt(x) + β
1/2
(i) σt(x), lcbt(x) = μt(x)− β

1/2
(i) σt(x).

2: Set

Mt =
{
x ∈ Mt−1 : ucbt(x) ≥ h and lcbt(x) ≤ h

}
,

Ht = Ht−1 ∪
{
x ∈ Mt−1 : lcbt(x) > h

}
, Lt = Lt−1 ∪

{
x ∈ Mt−1 : ucbt(x) < h

}
.

3.3 Unified Approach to BO and LSE

In order to state the results for BO and LSE in a unified fashion, we define a notion of ε-accuracy
for the two settings. That is, we define this term differently in the two scenarios, but then we

provide theorems that simultaneously apply to both.

Definition 3.3.1. After time step t of TRUVAR, we use the following terminology:

• For BO, the set Mt is ε-accurate if it contains all true maxima x∗ ∈ argmaxx f(x), and all
of its points satisfy f(x∗)− f(x) ≤ ε.

• For LSE, the triplet (Mt, Ht, Lt) is ε-accurate if all points in Ht satisfy f(x) > h, all points
in Lt satisfy f(x) < h, and all points in Mt satisfy |f(x)− h| ≤ ε

2 .

In both cases, the cumulative cost after time t is defined as Ct =
∑t

t′=1 c(xt′).
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We use ε
2 in the LSE setting instead of ε since this creates a region of size ε where the function

value lies, which is consistent with the BO setting.

3.3.1 General Result

Preliminaries

Suppose that the {β(i)} are chosen to ensure valid confidence bounds, i.e., lcbt(x) ≤ f(x) ≤
ucbt(x) with high probability; see Theorem 3.3.1 below and its proof for such choices. In this

case, we have after the i-th epoch of the algorithm that all points are either already discarded

(BO) or classified (LSE), or are known to within some confidence (1+ δ)η(i). For the points with

such confidence, we have ucbt(x)− lcbt(x) ≤ 2(1 + δ)η(i), and hence

ucbt(x) ≤ lcbt(x) + 2(1 + δ)η(i) ≤ f(x) + 2(1 + δ)η(i), (3.9)

and similarly lcbt(x) ≥ f(x)− 2(1 + δ)η(i). This means that all points other than those within

a gap of width 4(1 + δ)η(i) must have been discarded or classified:

Mt ⊆
{
x : f(x) ≥ f∗ − 4(1 + δ)η(i)

}
=: M (i) (BO) (3.10)

Mt ⊆
{
x : |f(x)− h| ≤ 2(1 + δ)η(i)

}
=: M (i) (LSE) (3.11)

Note that this is true regardless of the actual observations.

For a collection of points S, possibly containing duplicates, we write c(S) =
∑

x∈S c(x).

Moreover, we denote the posterior variance upon observing the points up to time t− 1 and the ad-

ditional points in S by σt−1|S(x). Therefore, c(x) = c({x}) and σt−1|x(x) = σt−1|{x}(x). The

minimum cost (respectively, maximum cost) is denoted by cmin = minx∈D c(x) (respectively,

cmax = maxx∈D c(x)).

Finally, we introduce the quantity

C∗(ξ,M) = min
{
c(S) : max

x∈M
σ0|S(x) ≤ ξ

}
, (3.12)

representing the minimum cost to achieve a posterior standard deviation of at most ξ within M .

Statement of Theorem

In all of our results, we make the following assumption.

Assumption 3.3.1. The kernel k(x,x′) is such that the variance reduction function

ψt,x(S) = σ2
t (x)− σ2

t|S(x) (3.13)

is submodular (see (2.17)) for any time t, and any points (x1, . . . ,xt) and x.
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We refer the reader to Section 2.3 for a brief introduction on submodular functions. This

assumption has been used in several previous works based on GPs, and sufficient conditions for

its validity can be found in [DK08, Sec. 8]. We now state the following general guarantee.

Theorem 3.3.1. Fix ε > 0 and δ ∈ (0, 1), and suppose there exist values {C(i)} and {β(i)} s.t.

C(i) ≥ C∗
(

η(i)

β
1/2
(i)

,M (i−1)

)
log

|M (i−1)|β(i)
δ
2
η2(i)

+ cmax, and (3.14)

and

β(i) ≥ 2 log
|D|(∑i′≤iC(i′)

)2
π2

6δcmin
2

. (3.15)

Then if TRUVAR is run with these choices of β(i) until the cumulative cost reaches

Cε =
∑

i : 4(1+δ)η(i−1)>ε

C(i), (3.16)

then with probability at least 1− δ, we have ε-accuracy.

While this theorem is somewhat abstract, it captures the fact that the algorithm improves when

points having a lower cost and/or lower noise are available, since both of these lead to a smaller

value of C∗(ξ,M); the former by directly incurring a smaller cost, and the latter by shrinking the

variance more rapidly. Next, we provide a proof of Theorem 3.3.1 that is based on the connection

between TRUVAR rule and budgeted submodular covering problem (details on the standard

version of this problem are given in Section 2.3). In the subsequent sections, we specialize this

result to some important cases.

3.3.2 Proof of General Result

We begin by restating Lemma 2.2.1.

Lemma 2.2.1 ([SKKS10]). For each t, define βt = 2 log |D|t2π2

6δ . With probability at least 1− δ,

we have for all x and t that |f(x)− μt−1(x)| ≤ β
1/2
t σt−1(x).

We conclude that in order for μt(·)± β
1/2
(i) σt(·) to provide valid confidence bounds, it suffices

to ensure that β(i) ≥ βt for all t in epoch i. From (3.15), we see that this is true provided that

the time taken to reach the end of the i-th epoch is at most 1
cmin

∑
i′≤iC(i′). Since cmin is the

minimum pointwise cost, this holds provided that the cost incurred in epoch i is at most C(i). We

therefore let β(i) be chosen accordingly (cf., (3.15)), leaving us only to bound C(i) itself.

We connect TRUVAR with the following budgeted submodular covering problem:

minimizeS c(S) subject to gt(S) = gt,max. (3.17)
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η2
(i)

β(i)

σ2
t−1(x̄)

x̄

Area gt,max

Figure 3.2: Illustration of the excess variance gt,max.

Here,

gt(S) =
∑

x∈Mt−1

max

{
σ2
t−1(x),

η2(i)

β(i)

}
−

∑
x∈Mt−1

max

{
σ2
t−1|S(x),

η2(i)

β(i)

}
, (3.18)

and gt,max is the highest possible value3 of gt(S) over arbitrarily large sets S, i.e., it is the value

obtained once all of the summands in the second summation in (3.18) have saturated to
η2
(i)

β(i)
:

gt,max =
∑

x∈Mt−1

(
max

{
σ2
t−1(x),

η2(i)

β(i)

}
−

η2(i)

β(i)

)
(3.19)

=
∑

x∈Mt−1

max

{
0, σ2

t−1(x)−
η2(i)

β(i)

}
. (3.20)

We thus refer to gt,max as the excess variance; see Figure 3.2 for an illustration. Note that each

time instant t corresponds to a different function gt(S), and we are considering sets S of an

arbitrary size even though our algorithm only chooses one point at each time instant. By our

assumption on the submodularity of the variance reduction function, and the fact that taking the

minimum with a constant4 preserves submodularity [KG12], gt(S) is also submodular. It is also

easily seen to be monotonically increasing, and normalized in the sense that gt(∅) = 0.

Our selection rule (3.5) at time t can now be interpreted as the first step in a greedy algorithm

for solving the budgeted submodular optimization problem (3.17). To obtain performance

guarantees, we make use of Lemma 2 of [KG05b] specialized to the special case when |S| = 1.

3Recall that S may contain duplicates, and these are counted multiple times accordingly in the definitions of both

c(S) and gt(S). More formally, all of our equations can be cast in terms of standard sets (without duplicates) by

expanding D to D × {1, · · · , N} for any integer N that is larger than the maximum number of points that can be

chosen throughout the course of the algorithm.
4The minimum becomes a maximum after negation.
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This result reads as follows in our own notation:

gt({xt}) ≥ c(xt)

c(S∗
t )
gt,max, (3.21)

where S∗
t is an optimal solution to (3.17), and hence gt(S

∗) = gt,max. Here xt is the point chosen

greedily by our algorithm.

We now consider the behavior of the excess variance gt,max in a single epoch, i.e., the duration

of a single value of i (and hence η(i) and β(i)) in the algorithm. We claim that for t and t+ 1 in

the same epoch, we have

gt+1,max ≤ gt,max − gt({xt}). (3.22)

To see this, we note from (3.18)–(3.19) that this would hold with equality if we were to have

Mt = Mt−1, since by definition we have σ2
t (x) = σ2

t−1|{xt}(x). We therefore obtain (3.22) by

recalling that the set Mt−1 is decreasing with respect to inclusion, and noting from (3.20) that

any given gt,max can only decrease when Mt−1 is smaller.

Combining (3.21)–(3.22) gives

gt+1,max ≤
(
1− c(xt)

c(S∗
t )

)
gt,max. (3.23)

Hence, by recursing and noting that c(S∗
t+1) ≤ c(S∗

t ) due to the monotonicity of σ2
t in t, we

obtain for t and t+ � in the same epoch that

gt+�,max

gt,max
≤

t+�∏
t′=t+1

(
1− c(xt′)

c(S∗
t )

)
(3.24)

≤ exp

(
−

∑t+�
t′=t+1 c(xt′)

c(S∗
t )

)
, (3.25)

where we have applied the inequality 1−α ≤ e−α. Moreover, the total cost incurred by choosing

these points is precisely
∑t0+�

t=t0+1 c(xt). Thus, letting t0 be the first time index in the epoch, we

find that in order to remove all but a proportion γ of the initial excess variance gt0,max, it suffices

that the cost C(i) incurred in the epoch satisfies

C(i) ≥ c(S∗
t0) log

1

γ
. (3.26)

Next, we observe that since the posterior Gaussian process variance is upper bounded by

one due to the assumption k(x,x) = 1, the initial excess variance gt0,max is upper bounded by

gt0,max ≤ |Mt0 |, the size of the set of potential maximizers at the start of the epoch. Recalling

that the following holds M (i−1) ⊇ Mt0 (see (3.10)–(3.11)), we also have gt0,max ≤ |M (i−1)|.
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It follows that if we choose

γ =
δ
2
η2(i)

β(i)|M (i−1)|
, (3.27)

then removing all but a proportion γ of gt0,max also implies removing all but δ
2 η2

(i)

β(i)
of it. In other

words, if at time t we have incurred a cost in the epoch satisfying (3.26) with γ as in (3.27), then

we must have gt,max ≤ δ
2 η2

(i)

β(i)
.

Removing all of the excess variance would imply η(i)-confidence at all points in Mt. In the

worst case, the remaining excess variance δ
2 η2

(i)

β(i)
is concentrated entirely on a single point, in

which case its confidence is upper bounded by

√
1 + δ

2
η(i), which is further upper bounded by

(1 + δ)η(i) due to the identity
√
1 + α2 ≤ 1 + α.

Combining these observations, we have that in the i-th epoch, upon incurring a cost of at least

C(i) ≥ c(S∗
t0) log

|M (i−1)|β(i)
δ
2
η2(i)

, (3.28)

we are guaranteed to have (1 + δ)η(i)-confidence for all points in Mt. However, having such

confidence is precisely the condition used in the algorithm to move onto the next epoch, and we

conclude that the epoch must end by (or sooner than) the time that (3.28) holds. By definition,

c(S∗
t0) is the smallest possible cost to uniformly shrink the posterior standard deviation within

Mt0 ⊆ M (i−1) down to
η2
(i)

β(i)
, thus coinciding with the definition in (3.12). Therefore, we can

weaken (3.29) to

C(i) ≥ C∗
(

η(i)

β
1/2
(i)

,M (i−1)

)
log

|M (i−1)|β(i)
δη2(i)

. (3.29)

We are now in a position to check the conditions for ε-accuracy in Def. 3.3.1. In the case of

BO, summing (3.29) over all of the epochs such that 4(1+ δ)η(i−1) > ε yields (3.16); recall from

(3.10) that after any epoch i such that 4(1 + δ)η(i) ≤ ε, all points are at most ε-suboptimal. We

also note that all true maxima must remain in Mt, due to the fact that we have chosen β(i) to ensure

valid confidence bounds w.h.p., and we only ever discard points that are deemed suboptimal

according to those bounds. For LSE, a similar conclusion follows from (3.11) by summing over

all epochs such that 2(1 + δ)η(i−1) >
ε
2 , which is exactly the same as 4(1 + δ)η(i−1) > ε. Once

again, all points in Ht and Lt are correct due to the validity of our confidence bounds. In both

cases, we add an additional term cmax to the right-hand side of (3.29) to account for the fact that

once the cost exceeds the right-hand side, it could exceed it by any amount up to cmax.
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3.4 Homoscedastic Noise and Unit-Cost Setting

In this section, we specialize our result (Theorem 3.3.1) to the homoscedastic and unit-cost

setting, i.e. σ2(x) = σ2 and c(x) = 1. Recall the maximum mutual information definition

from (2.10),

γT = max
x1,...,xT

1

2
log det

(
IT + σ−2KT

)
.

In Appendix 3.A.1, we provide a theorem with a condition for ε-accuracy of the form

T ≥ O∗
(
C1γTβT

ε2
+ 1

)
, (3.30)

with C1 = 1
log(1+σ−2)

, thus matching existing bounds [GCHK13, CBRV13] up to logarithmic

factors. In the following, we present a refined version that has a significantly better dependence

on the noise level, thus exemplifying that a more careful analysis of our result in (3.14) can

provide improvements over the standard bounding techniques.

Corollary 3.4.1. Fix ε > 0 and δ ∈ (0, 1), define βT = 2 log |D|T 2π2

6δ , and set η(1) = 1 and
r = 1

2 . There exist choices of β(i) (not depending on the time horizon T ) such that we have
ε-accuracy with probability at least 1− δ once the following condition holds:

T ≥
(
2σ2γTβT

96(1 + δ)2

ε2
+ C1γTβT

6

σ2
+ 2

⌈
log2

32(1 + δ)

εσ

⌉)
log

16(1 + δ)2|D|βT
δ
2
ε2

,

(3.31)

where C1 =
1

log(1+σ−2)
. Hence, it suffices that

T ≥ O∗(σ2γTβT
ε2

+
C1γTβT

σ2
+ 1

)
. (3.32)

The choices η(1) = 1 and r = 1
2 are made for mathematical convenience, and a similar result

follows for any other choices η(1) > 0, r ∈ (0, 1), possibly with different constant factors.

As σ2 → ∞ (i.e., high noise), both of the above-mentioned bounds have noise dependence

O∗(σ2), since log(1 + α−2) = O(α−2) as α → ∞. On the other hand, as σ2 → 0 (i.e., low

noise), C1 is logarithmic, and Corollary 3.4.1 is significantly better provided that ε � σ.

3.5 Multi-fidelity Setting

In this section, we consider the setting that there is a domain of points D0 that the reward function

depends on, and alongside each point we can also choose a noise variance σ2(k) (k = 1, . . . ,K)

of the observation when sampling. Hence, D = D0 × {1, · · · ,K}. Lower noise variances incur

a higher cost according to a cost function c(k). The described setting corresponds to the scenario

where we need to pay a higher cost to get a more precise (less noisy) observation.
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Next, we present our main result in this setting:

Corollary 3.5.1. For each k = 1, · · · ,K, let T ∗(k) denote the smallest value of T such that
(3.31) holds with σ2(k) in place of σ2, and with βT = 2 log |D|T 2cmax

2π2

6δcmin
2 . Then, under the

preceding setting, there exist choices of β(i) (not depending on T ) such that we have ε-accuracy
with probability at least 1− δ once the cumulative cost reaches mink c(k)T

∗(k).

This result roughly states that we obtain a bound as good as that obtained by sticking to

any fixed choice of noise level. In other words, every choice of noise (and corresponding cost)

corresponds to a different version of a BO or LSE algorithm (e.g., [GCHK13, CBRV13]), and our

algorithm has a similar performance guarantee to the best among all of those. This is potentially

useful in avoiding the need for running an algorithm once per noise level and then choosing the

best-performing one. Moreover, we found numerically that beyond matching the best fixed noise

strategy, we can strictly improve over it by mixing the noise levels; see Section 3.7.

3.6 Comparisons to Lower Bounds

In this section, we first discuss the extension of the result obtained in Section 3.4 (unit cost and

homoscedastic setting) to the non-Bayesian setting (see Section 2.2.1), and then we compare the

obtained bounds with the lower bounds from [SBC17].

In the previous sections, our focus was on the Bayesian setting, where f was considered to be

random and distributed according to a Gaussian process with the specified kernel. In this section,

we assume that the input space D is endowed with the positive definite kernel function k(·, ·)
that is normalized to satisfy k(x,x) = 1 for all x ∈ D. The unknown function f is an arbitrary

fixed function that has a bounded norm in the corresponding Reproducing Kernel Hilbert Space

(RKHS) Hk(D) induced by the kernel function, i.e. f ∈ Fk(B), where

Fk(B) = {f ∈ Hk(D) : ‖f‖k ≤ B}.

The key to adapting TRUVAR to this setting is the following confidence lemma from [CG17].

It allows us to run TRUVAR with the GP prior GP(0, k) which is misspecified in this case.

Lemma 3.6.1 ([CG17]). Fix f ∈ Fk(B), and consider the sampling model yt = f(xt)+ zt with
zt ∼ N (0, σ2) with independence between times. Under the choice

βt =

(
B + σ

√
2(γt−1 + log

e

ξ
)

)2

,

the following holds with probability at least 1− ξ:

lcbt−1(x) ≤ f(x) ≤ ucbt−1(x), ∀x ∈ D, ∀t ≥ 1. (3.33)
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3.6. Comparisons to Lower Bounds

Upper bound

(this work)

Conj. upper bound

(see Section 3.6)

Lower bound

([SBC17])

SE kernel

Time to simple regret ε
O∗

(
1
ε2

(
log 1

ε

)2p
)

O∗
(

1
ε2

(
log 1

ε

)p
)

Ω

(
1
ε2

(
log 1

ε

) p
2

)
Matérn kernel

Time to simple regret ε
O∗

((
1
ε

) 2(2ν+p(p+1))
2ν−p(p+1)

)
(if 2ν − p(p+ 1) > 0)

O∗
((

1
ε

)2+
p(p+1)

ν

)
Ω

((
1
ε

)2+ p
ν

)

Table 3.1: Summary of simple regret bounds for a fixed RKHS norm bound B and noise level σ2.

Upon suitably changing the choice of β(i) according to the previous lemma in our algorithm,

the validity of the confidence bounds is ensured, and the rest of the algorithm remains unchanged.

We also need the following condition to hold for every epoch i (cf. Theorem 3.3.1)

β(i) ≥
(
B + σ

√
2(γT̄(i)

+ log
e

ξ
)

)2

, (3.34)

where T̄(i) =
∑

i′≤i T(i). Accordingly, in place of βT = 2 log |D|T 2π2

6δ (cf., Corollary 3.4.1) we

have

βT =

(
B + σ

√
2(γT + log

e

ξ
)

)2

. (3.35)

The regret bound obtained by our algorithm in the non-Bayesian setting remains of the

same form as the one obtained in the Bayesian setting in Section 3.4, i.e. time to ε-regret is

T ≥ O∗
(
C1γT βT

ε2
+ 1

)
, where βT is now given in (3.35).

Our algorithm also extends easily to compact domains such as [0, 1]p. The main challenge is

that the summations in (3.5) become integrals that need to be approximated numerically. The

simplest way of doing this is to approximate the integrals by summations over a finite number of

representer points, e.g., a grid of values that cover the domain sufficiently densely.

Hence, the time to ε simple regret for our algorithm in the non-Bayesian setting when D =

[0, 1]p (under assumption that we can exactly compute the acquisition rule) remains

T ≥ O∗
(
C1γTβT

ε2
+ 1

)
. (3.36)

We proceed by considering the case that σ and B behave as Θ(1). For a fixed σ, and by

substituting βT with (3.35) in (3.36), we arrive at the condition for ε-optimality

T

BγT + γ2T
≥ C

ε2
, (3.37)
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where C = O∗(1). By further substituting γT = O((log T )p+1) from (2.11) for the SE kernel

and rearranging, the condition becomes of the form

T ≥ C ′ε−2

(
log

1

ε

)2p

,

for some C ′ = O∗(1). In comparison to the lower bound obtained in [SBC17], the two bounds

coincide up to the factor of 2 vs. 1
2 in the exponent (see Table 3.1).

For the Matérn kernel, by substituting

γT = O∗
(
T

p(p+1)
2ν+p(p+1)

)
from (2.12) in (3.37) and rearranging, the condition for ε- simple regret becomes

T ≥ C ′′
(1
ε

) 2(2ν+p(p+1))
2ν−p(p+1)

,

where C ′′ ∈ O∗(1). Moreover, for having a non-void condition on the simple regret we require

2ν − p(p+ 1) > 0.

The gap between the upper and lower bound obtained for the Matérn kernel is more significant

(cf. Table 3.1) than in the case of the SE kernel. If (3.37) could be improved to

T

BγT
≥ C ′′′

ε2
, (3.38)

for some C ′′′ = O∗(1), then this would lead to a non-void condition on the simple regret for

all p and ν. We conjecture that such a bound could hold, similarly to the one obtained in the

Bayesian setting (see the scallings in Corollary 3.4.1). This is an interesting open problem for

future work. Next, we briefly discuss the resulting bounds if this conjecture was true. These

bounds are summarized in the middle column of Table 3.1.

In the case of the squared exponential kernel, we would obtain the bound that would partially

close the gap mentioned above on the factor of 2 in the exponent. For the Matérn kernel, we

would obtain

T ≥ O∗
((1

ε

)2+p(p+1)/ν
)
,

and hence, our bound would match the lower bound up to the replacement of p by p(p+ 1).

3.7 Experimental Evaluation

We evaluate our algorithm in both the level-set estimation and Bayesian optimization settings.

Parameter choices: As with previous GP-based algorithms that use confidence bounds, our
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theoretical choice of β(i) in TRUVAR is typically overly conservative. Therefore, instead of using

(3.15) directly, we use a more aggressive variant with similar dependence on the domain size and

time: β(i) = a log(|D|t2(i)), where t(i) is the time at which the epoch starts, and a is a constant.

Instead of the choice a = 2 dictated by (3.15), we set a = 0.5 for BO to avoid over-exploration.

We found exploration to be more beneficial for LSE, and hence set a = 1 for this setting. We

found TRUVAR to be robust with respect to the choices of the remaining parameters, and simply

set η(1) = 1, r = 0.1, and δ = 0 in all experiments (even though our theory requires δ > 0).

3.7.1 Level-set Estimation Experiments

For the LSE experiments, we use a common classification rule in all algorithms, classifying the

points according to the posterior mean as Ĥt = {x : μt(x) ≥ h} and L̂t = {x : μt(x) < h}.

The classification accuracy is measured by the F1-score (i.e., the harmonic mean of precision and

recall) with respect to the true super- and sub-level sets.

We compare TRUVAR against the GP-based LSE algorithm [GCHK13] (GCHK), as well as

the state-of-the-art straddle (STR) heuristic [BS08] and maximum variance rule (VAR). A short

descriptions of these methods is as follows:

• The level-set estimation (LSE) algorithm [GCHK13] evaluates, at each iteration, the point

that is not yet classified with the largest ambiguity:

xt = argmax
x∈Mt−1

min{ucbt(x)− h, h− lcbt(x)},

where ucbt and lcbt are defined as in (3.3) with a parameter βt replacing β(i). Here,

similarly to our algorithm, Mt−1 is the set of points that have not yet been classified

as having a value above or below the threshold h. We follow the recommendation in

[GCHK13] of setting β
1/2
t = 3.

• The straddle (STR) heuristic [BS08] chooses

xt = argmax
x∈D

1.96σt−1(x)− |μt−1(x)− h|,

favoring high-uncertainty points that are expected to have function values closer to h.

• The maximum variance rule (VAR) simply chooses

xt = argmax
x∈D

σt−1(x).

Lake data (unit cost): We begin with a data set from the domain of environmental monitoring

of inland waters, consisting of 2024 in situ measurements of chlorophyll concentration within a

vertical transect plane, collected by an autonomous surface vessel in Lake Zürich [HPG+12]. As
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in [GCHK13], our goal is to detect regions of high concentration. We evaluate each algorithm on

a 50× 50 grid of points, with the corresponding values coming from the GP posterior that was

derived using the original data (see Figure 3.3d). We use the Matérn-5/2 ARD kernel, setting its

hyperparameters by maximizing the likelihood on the second (smaller) available dataset. The

level-set threshold h is set to 1.5.

In Figure 3.3a, we show the performance of the algorithms averaged over 100 different runs;

here the randomness is only with respect to the starting point, as we are in the noiseless setting.

We observe that in this unit-cost case, TRUVAR performs similarly to GCHK and STR. All

methods outperform VAR, which is good for global exploration but less suited to level-set

estimation.

Lake data (non-unit cost): Next, we modify the above setting by introducing pointwise costs

that are a function of the previous sampled point x′, namely, cx′(x) = 0.25|x1−x′1|+4(|x2|+1),

where x1 is the vessel position and x2 is the depth. Although we did not permit such a dependence

on x′ in our original setup, the algorithm itself remains unchanged. Our choice of cost penalizes

the distance traveled |x1 − x′1|, as well as the depth of the measurement |x2|. Since incorporating

costs into existing algorithms is non-trivial, we only compare against the original version of the

GCHK algorithm that ignores costs.

In Figure 3.3b , we see that TruVaR significantly outperform GCHK, achieving a higher F1

score for a significantly smaller cost. The intuition behind this can be seen in Figures 3.3e

and 3.3f, where we show the points sampled by TruVaR and GCHK in one run, connecting all

pairs of consecutive points. GCHK is designed to pick few points, but since it ignores costs, the

distance traveled is large. In contrast, by incorporating costs, TRUVAR travels small distances,

often even staying in the same x1 location to take measurements at multiple depths x2.

Synthetic data with multiple noise levels: In this experiment, we demonstrate Corollary 3.5.1

by considering the setting in which the algorithm can choose the sampling noise variance and

incur the associated cost. We use a synthetic function sampled from a GP on a 50× 50 grid with

an isotropic squared exponential kernel having length scale l = 0.1 and unit variance, and set

h = 2.25. Figure 3.4a plots the randomly-generated function that was used in this experiment. We

use three different noise levels, σ2 ∈ {10−6, 10−3, 0.05}, with corresponding costs {15, 10, 2}.

We run the GCHK algorithm separately for each of the three noise levels, while running

TRUVAR as normal and allowing it to mix between the noise levels. The resulting F1-scores

are shown in Figure 3.3c. The best-performing version of GCHK changes throughout the time

horizon, while TRUVAR is consistently better than all three.

Figure 3.4b plots the average cost spent by the TRUVAR algorithm on each noise level by the

end of the experiment. Again, we average the performance over 100 different experimental runs.

We see that the cost is roughly equally distributed across the three levels. Specifically, we

observed that TRUVAR initially chooses high noise levels in order to cheaply explore, and

throughout the course of the experiments, it gradually switches to lower noise levels (despite
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Figure 3.3: Experimental results for level-set estimation.

their high cost) in order to accurately determine the function values around the maximum. This is

consistent with the behavior of the three version of GCHK, with σ2 = 10−6 performing well in

the early stages, but σ2 = 0.05 being preferable in the later stages.
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(a) Threshold h = 2.25 (b) Cost paid per noise level

Figure 3.4: (a) Function used in synthetic level-set estimation experiments; (b) The amount of

cost used by TRUVAR for each of the three noise levels..

3.7.2 Bayesian Optimization Experiments

We now turn to the BO setting. We focus on the unit-cost case, since we already demonstrated

the effects of costs in the LSE experiments.

Synthetic data: We first conduct a similar experiment as that in [HS12, Met16], generating 200

different test functions defined on [0, 1]2. To generate a single test function, 200 points are chosen

uniformly at random from [0, 1]2, their function values are generated from a GP using an isotropic

squared exponential kernel with length scale l = 0.1 and unit variance, and the resulting posterior

mean forms the function on the whole domain [0, 1]2. We subsequently assume that samples of

this function are corrupted by Gaussian noise with σ2 = 10−6. For all algorithms considered,

we evaluate the performance according to the regret of a single reported point, namely, the one

having the highest posterior mean.

We compare the performance of TRUVAR against expected improvement (EI), GP-upper

confidence bound (GP-UCB), entropy search (ES) (see Section 2.2 for the description of these

methods). The exploration parameter βt in GP-UCB is set according to the recommendation

in [SKKS10] of dividing the theoretical value by five. In addition, we also compare against

minimum regret search (MRS) whose acquisition functions is further outlined:

• The Minimum Regret Search (MRS) algorithm [Met16] also resembles ES, but works with

the expected regret instead of the differential entropy. Monte Carlo techniques are used to

average with respect to the posterior distribution and the measurements. The parameters

for ES and MRS are set according to the recommendations given in [Met16, Section 5.1].

Figure 3.5a plots the median of the regret, and Figure 3.5b plots the mean after removing outliers

(i.e., the best and worst 5% of the experimental runs). In the earlier rounds, both ES and MRS

provide the best performance, while TRUVAR improves slowly due to the initial exploration.
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Figure 3.5: Experimental results for Bayesian optimization.

However, the regret of TRUVAR subsequently drops rapidly, giving the best performance in

the later rounds after “zooming in” towards the maximum. GP-UCB generally performs well

with the aggressive choice of βt, despite previous works revealing it to perform poorly with the

theoretical value.

Hyperparameter tuning data: We use the SVM on grid dataset, previously used in [SLA12]. A

24×14×4 grid of hyperparameter configurations resulting in 1400 data points was pre-evaluated,

forming the search space. The goal is to find a configuration with small validation error. We use

a Matérn-5/2 ARD kernel, and re-learn its hyperparameters by maximizing the likelihood after

sampling every 3 points. Since the hyperparameters are not fixed in advance, we replace Mt−1

by D in (3.4) to avoid incorrectly ruling points out, allowing some removed points to be added

again in later steps. Once the hyperparameters stop to vary significantly, the size of the set of

potential maximizers decreases almost monotonically. Since we consider the noiseless setting

here, we measure performance using the simple regret, i.e., the best point found so far.

Since the domain is discrete, we compare only against EI and GP-UCB. We again average over

100 random starting points, and plot the resulting validation error in Figure 3.5c. Even in this

noiseless and unit-cost setting that EI and GP-UCB are suited to, we find that TRUVAR performs

slightly better, giving a better validation error with smaller error bars.
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3.7.3 Variations of the TRUVAR Algorithm

In this last section, we outline a couple of practical aspects and settings to which our algorithm

TRUVAR can naturally be adapted. These include the following:

• Efficiently Computing the Acquisition Function: To compute the value of the acquisition

function (3.5) for different x ∈ D, we need to compute σ2
t−1|x(Mt−1) ∈ R

|Mt−1|, i.e.,

the posterior variance of Mt−1 upon observing x along with x1, · · · ,xt−1. Instead of

computing it directly, it is computationally more efficient to compute σ2
t−1|x(Mt−1) as

σ2
t−1(Mt−1)−Δσ2

t−1|x(Mt−1). The only term that depends on x is Δσ2
t−1|x(Mt−1) and it

can be computed, for a single x ∈ D, as ([HS12]):

Δσ2
t−1|x(Mt−1) = diag

(
Covt−1(Mt−1,x)(σ

2 + σ2
t−1(x))

−1Covt−1(x,Mt−1)
)
, (3.39)

where

σt−1(x)
2 = k(x,x)− kt−1(x)

T
(
Kt−1 +Σt−1

)−1
kt−1(x), (3.40)

Covt−1(Mt−1,x) = k(Mt−1,x)− kt−1(Mt−1)
T
(
Kt−1 +Σt−1

)−1
kt−1(x). (3.41)

Here, k(Mt−1,x) =
[
k(x̄i,x)

]|Mt−1|
i=1

and kt−1(Mt−1) =
[
k(x̄i,xj)

]|Mt−1|,t−1

i,j=1
are in

R
|Mt−1| and R

|Mt−1|×(t−1), respectively. Given that we can precompute the Cholesky decom-

position of the kernel matrix Kt−1+Σt−1, the term
(
Kt−1+Σt−1

)−1
kt−1(x) in both 3.40

and 3.41 can be computed in O(t2).

• Non-monotonic Mt: We have defined our sets Mt to become smaller on every time step.

However, if β(i) is chosen aggressively, it may be preferable to replace Mt−1 by D in

(3.4)–(3.6), in which case some removed points may be added back in depending on how the

posterior mean changes between steps. We take this approach in the real-world BO example of

Section 3.7 in which the kernel hyperparameters are learned online, so as to avoid incorrectly

ruling out points early on due to mismatched hyperparameters.

• Avoiding computing the acquisition function everywhere: We found that instead of com-

puting the acquisition function at every point in D, limiting the selection to points in Mt−1

does not harm the performance. To reduce the computation even further, one could adopt

a strategy such as that proposed in [SSA14]: Take some relatively small number of points

having the top GP-UCB or EI score, and then choose the point in that restricted subset having

the highest score according to (3.5). In fact, the numerical results in Figure 3.5 suggest that

this may not only reduce the computation, but also improve the performance in the very early

rounds by making the algorithm initially behave more like GP-UCB or EI.

• Pure variance reduction: Setting η(1) = 0 yields a pure variance reduction algorithm, which

minimizes the total variance within Mt via a one-step lookahead. While our theory does not

apply in this case, we found this choice to also work well in practice.
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• Implicit threshold for level-set estimation: While we have focused on a threshold h for

level-set estimation that is fixed in advance, one can easily incorporate the ideas of [GCHK13]

to allow for an implicit threshold which is equal to some constant multiple of the function’s

maximum (which is random and unknown in advance).

• Anticipating changes in Mt: The acquisition function (3.5) computes the truncated variance

reduction resulting from a one-step lookahead, but still sums over the previous set Mt−1. In

order to make it more preferable to choose points that shrink Mt faster, it may be preferable

to instead sum over Mt−1|x, defined to be the updated set upon adding x. The problem here

is that such an update depend on the next posterior mean, whose update requires sampling f ;

however, one can get around this by replacing the observed value with the current mean when

doing this one-step lookahead, and then using the true observed function sample only when

xt is actually chosen.

• Batch Setting: As we show in the proof of Theorem 3.3.1, our algorithm can be interpreted

as performing the first step of a greedy submodular covering problem at each time step. This

leads to a very natural extension to the batch setting, in which multiple points (say, k of them)

are chosen at each time step: Simply perform the first k steps of the greedy covering algorithm

during each batch.
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3.A Proofs

3.A.1 Simplified Result for the Homoscedastic and Unit-Cost Setting

Since we are focusing on unit costs c(x) = 1, the cost simply corresponds to the number of

rounds T . To highlight this fact, we replace C∗ in (3.12) by

T ∗(η,M) = min
{
|S| : max

x∈M
σ0|S(x) ≤ ξ

}
, (3.42)

and similarly replace (3.14)–(3.16) by

T(i) ≥ T ∗
(

η(i)

β
1/2
(i)

,M (i−1)

)
log

|M (i−1)|β(i)
δ
2
η2(i)

+ 1 (3.43)

β(i) ≥ 2 log
|M (i−1)|

(∑
i′≤i T(i′)

)2
π2

6δ
(3.44)

Tε =
∑

i : 4(1+δ)η(i−1)>ε

T(i). (3.45)

In this section, we prove the following as an application of Theorem 3.3.1.

Corollary 3.A.1. Fix ε > 0 and δ ∈ (0, 1), define βT = 2 log |D|T 2π2

6δ , and set η(1) = 1 and
r = 1

2 . There exist choices of β(i) (not depending on the time horizon T ) such that we have
ε-accuracy with probability at least 1− δ once the following condition holds:

T ≥
(
C1γTβT

96(1 + δ)2

ε2
+ 2

⌈
log2

8(1 + δ)

ε

⌉)
log

16(1 + δ)2|D|βT
δ
2
ε2

(3.46)

= O∗
(
C1γTβT

ε2
+ 1

)
, (3.47)

where C1 =
1

log(1+σ−2)
.

We bound the cardinality of S in (3.42) by considering a (suboptimal) procedure that greedily

picks argmaxx∈M σt(x). We claim that after selecting k points according to this procedure to

construct a set Sk, we have

max
x

σ2
0|Sk

(x) ≤ C1
γk
k
, (3.48)

where C1 =
1

log(1+σ−2)
. This is seen by writing

kmax
x∈M

σ2
0|Sk

(x) = kσ2
0|Sk

(xk) ≤
k∑

j=1

σ2
0|Sj

(xj) (3.49)

≤ 1

log(1 + σ−2)
γk. (3.50)
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We respectively used that xk was chosen to maximize σ0|Sk
, that σ0|Si

(xi) always decreases as

more points are chosen, and the bound on the sum of variances of the selected points of a GP

from [SKKS10, Lemma 5.4].

Identifying k with T ∗, and maxx∈M σ0|Sk
(x) with ξ = η

β1/2 (for some η and β to be specified),

we obtain from (3.50) that

T ∗
(

η

β1/2
,M

)
≤ min

{
T ∗ : T ∗ ≥ C1γT ∗β

η2

}
. (3.51)

Let T ∗
(i) := T ∗

(
η(i)

β
1/2
(i)

,M (i−1)

)
be the value of T ∗ using the parameters η = η(i) and β = β(i)

associated with epoch i. Letting T = Tε denote the total time horizon, and using (3.45), we find

that β(i) in (3.44) can be upper bounded by 2 log |D|T 2π2

6δ , which is precisely βT . By similarly

using the monotonicity of γt, we obtain the condition

T ∗
(i) ≥

C1γTβT
η2(i)

+ 1, (3.52)

where the addition of one is to account for possible rounding up to the nearest integer.

Substituting (3.52) into (3.43) gives the condition

T(i) ≥
(
C1γTβT

η2(i)
+ 1

)
log

|M (i−1)|β(i)
δ
2
η2(i)

+ 1. (3.53)

Since we are only considering values of i such that 4(1 + δ)η(i−1) > ε, and since M (i−1) ⊆ D,

we can upper bound the logarithm by log
16(1+δ)2|D|β(i)

δ
2
ε2

> 1, and we can therefore weaken (3.53)

to

T(i) ≥
(
C1γTβT

η2(i)
+ 2

)
log

16(1 + δ)2|D|β(i)
δ
2
ε2

. (3.54)

We also note that since η(i) = η(1)r
i−1, the condition 4(1 + δ)η(i−1) > ε is equivalent to

4(1 + δ)η(1)r
i−2 > ε (3.55)

⇐⇒ ri−2 >
ε

4(1 + δ)η(1)
(3.56)

⇐⇒ i < 2 + log1/r
4(1 + δ)η(1)

ε
(3.57)

⇐⇒ i ≤
⌈
log1/r

4(1 + δ)η(1)

ε

⌉
+ 1 (3.58)

⇐⇒ i ≤
⌈
log1/r

4(1 + δ)η(1)

rε

⌉
, (3.59)

where in the last line we used log1/r
1
r = 1.
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Summing (3.54) over all such i in accordance with (3.45), we obtain the condition

T ≥
(
C1γTβT

�log1/r
4(1+δ)η(1)

ε
�+1∑

i=1

1

η2(i)
+ 2

⌈
log1/r

4(1 + δ)η(1)

rε

⌉)
log

16(1 + δ)2|D|βT
δ
2
ε2

.

(3.60)

Finally, evaluating the summation gives

�log1/r
4(1+δ)η(1)

ε
�+1∑

i=1

1

η2(i)
=

�log1/r
4(1+δ)η(1)

ε
�+1∑

i=1

1

η2(1)r
2(i−1)

(3.61)

=

�log1/r
4(1+δ)η(1)

ε
�∑

i=0

1

η2(1)r
2i

(3.62)

≤ 1

r2(1− r2)

16(1 + δ)2

η2(1)ε
2

, (3.63)

where the last line follows from the identity
∑�log1/r A�

i=0
1
r2i

≤ 1
r2(1−r2)

A2. Substituting r = 1
2

and η(1) = 1 concludes the proof; the former yields 1
r2(1−r2)

= 16
3 ≤ 6.

3.A.2 Proof of Improved Noise Dependence (Corollary 3.4.1)

The bound in (3.50) is based on the inequality [SKKS10, Lemma 5.4]

σ2
t

σ2
≤ C1 log

(
1 +

σ2
t

σ2

)
(3.64)

for σ2
t ∈ [0, 1] (with C1 =

σ−2

log(1+σ−2)
), which can be very loose when σ2 is small.

Our starting point to improve the noise dependence is to note that the following holds under

the more restrictive condition σ2
t ≤ σ2:

σ2
t = σ2σ

2
t

σ2
(3.65)

≤ 2σ2 log

(
1 +

σ2
t

σ2

)
, (3.66)

where we have used the fact that α ≤ 2 log(1 + α) for α ∈ [0, 1].

The idea that we pursue now is to use (3.66) in the epochs that are late enough to ensure that

σ2
t ≤ σ2, and (3.50) in the earlier epochs. Since (1 + δ)η(i) represents the confidence level

obtained after epoch i, and since β
1/2
(i) σt represents the confidence level after time t, we find

that in order to ensure σ2
t ≤ σ2 it suffices that the following condition holds

(1+δ)2η2
(i)

β(i)
≤ σ2.

52
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Moreover, our choice of β(i) in (3.15) is always greater than one when |D| ≥ 2 (which is a trivial

condition), and hence we can simplify this condition to η2(i) ≤ σ2, and write

∑
i

T(i) ≤
∑

i : η2
(i−1)

>σ2

T
(C1)
(i) +

∑
i

T
(2σ2)
(i) , (3.67)

where T
(C1)
(i) denotes bound on T(i) in (3.54) based on (3.50), and T

(C1)
(i) denotes the analogous

bound based on (3.66) with 2σ2 in place of C1. Similarly to (3.59), the first summation is over a

subset of the range i ≤ �log1/r η(1)
rσ �, and it follows that the condition (3.60) may be replaced by

T ≥
(
2σ2γTβT

�log1/r
η(1)
σ

�+1∑
i=1

1

η2(i)
+ 2

⌈
log1/r

4(1 + δ)η(1)

rε

⌉)
log

16(1 + δ)2|D|βT
δ
2
ε2

+

(
C1γTβT

∑
i : η2

(i−1)
>σ2

1

η2(i)
+ 2

⌈
log1/r

η(1)

rσ

⌉)
log

16(1 + δ)2|D|βT
δ
2
ε2

. (3.68)

The first summation is handled in the same way as the previous subsection, and the second

summation is upper bounded by writing

∑
i : η2

(i−1)
>σ2

1

η2(i)
≤

�log1/r
η(1)
σ

�+1∑
i=1

1

η2(1)r
2(i−1)

(3.69)

≤ 1

r2(1− r2)η2(1)

1

σ2
, (3.70)

where (3.69) follows since η(i) = η(1)r
i−1, and (3.70) follows in the same way as (3.63). Once

again, setting r = 1
2 and η(1) = 1 concludes the proof, with the third term in (3.31) coming from

the identity 2
⌈
log2

8(1+δ)
ε

⌉
+ 2

⌈
log2

2
σ

⌉ ≤ 2
⌈
log2

32(1+δ)
εσ

⌉
.

3.A.3 Proof for the Multi-fidelity setting (Corollary 3.5.1)

The proof follows the same arguments as those of Appendices 3.A.1 and 3.A.2, with C∗ being

upper bounded in K different ways, one for each possible noise level. The choice βT =

2 log |D|T 2cmax
2π2

6δcmin
2 arises as a simple upper bound to the right-hand side of (3.15) resulting from

the fact that
∑T

t=1 c(xt) ≤ cmaxT .
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4 Robust Optimization with
Gaussian Processes

We consider the problem of sequential Gaussian process optimization as in the previous chapter,

but with an added robustness requirement: An adversary may perturb the returned point, and

we require the function value to remain as high as possible even after this perturbation. This

problem is motivated by, e.g., settings where the underlying functions during optimization and

implementation stages are different. We show that standard BO algorithms do not exhibit the

desired robustness properties, and give a novel confidence-bound based algorithm for this purpose.

This chapter is based on the joint work with Jonathan Scarlett, Stefanie Jegelka and Volkan

Cevher [BSJC18].

4.1 Introduction

Gaussian processes (GP) provide a powerful means for sequentially optimizing a black-box

function f that is costly to evaluate and for which noisy point evaluations are available. This

approach has successfully been applied to numerous applications, including robotics [LWBS07],

hyperparameter tuning [SLA12], recommender systems [VNDBK14], environmental monitoring

[SKKS10], and more. In many such applications, one is faced with various forms of uncertainty

that are not accounted for by standard algorithms. In robotics, the optimization is often per-

formed via simulations, creating a mismatch between the assumed function and the true one;

in hyperparameter tuning, the function is similarly mismatched due to limited training data; in

recommendation systems and several other applications, the underlying function is inherently

time-varying, so the returned solution may become increasingly stale over time; the list goes on.

In this chapter, we address these considerations by studying the GP optimization problem

with an additional requirement of adversarial robustness: The returned point may be perturbed

by an adversary, and we require the function value to remain as high as possible even after this

perturbation. This problem is of interest not only for attaining improved robustness to uncertainty,

but also for other related max-min optimization settings (see Section 4.3 for further discussion).
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4.1.1 Problem Statement

Let f be an unknown reward function over a domain D ⊆ R
p for some dimension p. At time t,

we query f at a single point xt ∈ D and observe a noisy sample yt = f(xt) + zt, where

zt ∼ N (0, σ2). After T rounds, a recommended point x(T ) is returned. In contrast with the

standard goal of making f(x(T )) as high as possible, we seek to find a point such that f remains

high even after an adversarial perturbation; a formal description is given below.

We consider the non-Bayesian setting (cf. Section 2.2.1) first, while in Section 4.3 we show that

our main results also hold in the Bayesian setting. We assume that D is endowed with the positive

definite kernel function k(·, ·), and f has a bounded norm in the corresponding Reproducing

Kernel Hilbert Space (RKHS) Hk(D). Specifically, we assume that f ∈ Fk(B), where

Fk(B) = {f ∈ Hk(D) : ‖f‖k ≤ B}, (4.1)

and ‖f‖k is the RKHS norm in Hk(D). It is well-known (e.g., see [SKKS10, CG17]) that this

assumption permits the construction of confidence bounds via Gaussian process (GP) methods;

recall Lemma 3.6.1. We assume that the kernel is normalized to satisfy k(x,x) = 1 for all x ∈ D.

Two commonly-considered kernels are squared exponential (SE) and Matérn that we provide

in (2.2). Given a sequence of decisions {x1, · · · ,xt} and corresponding noisy observations

{y1, · · · , yt}, the posterior distribution under a GP prior is also Gaussian, with the mean and

variance given in (2.4).

We proceed to define our optimization goal. Let d(x,x′) be a function mapping D ×D → R,

and let ε be a constant known as the stability parameter. For each point x ∈ D, we define a set

Δε(x) =
{
x′ − x : x′ ∈ D and d(x,x′) ≤ ε

}
. (4.2)

One can interpret this as the set of perturbations of x such that the newly obtained point x′ is

within a “distance” ε of x. While we refer to d(·, ·) as the distance function throughout this

chapter, we allow it to be a general function, and not necessarily a distance in the mathematical

sense. As we exemplify in Section 4.4, the parameter ε might be naturally specified as part of

the application, or might be better treated as a parameter that can be tuned for the purpose of the

overall learning goal.

We define an ε-stable optimal input to be any x∗
ε satisfying

x∗
ε ∈ argmax

x∈D
min

δ∈Δε(x)
f(x+ δ). (4.3)

Our goal is to report a point x(T ) that is stable in the sense of having low ε-regret, defined as

rε(x) = min
δ∈Δε(x∗

ε )
f(x∗

ε + δ)− min
δ∈Δε(x)

f(x+ δ). (4.4)
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4.1. Introduction

f(x∗
0)

f(x∗
ε )

f

(a) Unknown function f

min
δ∈Δε(x)

f(x+ δ)

(b) Robust objective

ucb

lcb

(c) Points selected by GP-UCB

Figure 4.1: (a) A function f and its maximizer x∗
0; (b) for ε = 0.06 and d(x,x′) = |x− x′|, the

decision that corresponds to the local “wider” maximum of f is the optimal ε-stable decision; (c)

GP-UCB selects a point that nearly maximizes f , but is strictly suboptimal in the ε-stable sense.

Note that once rε(x) ≤ η for some accuracy value η ≥ 0, it follows that

min
δ∈Δε(x)

f(x+ δ) ≥ min
δ∈Δε(x∗

ε )
f(x∗

ε + δ)− η. (4.5)

We assume that d(·, ·) and ε are known, i.e., they are specified as part of the problem.

As a running example, we consider that d(x,x′) = ‖x − x′‖ for some norm ‖ · ‖ (e.g., �2-

norm), in which case achieving low ε-regret amounts to favoring broad peaks instead of narrow

ones, particularly for higher ε; see Figure 4.1 for an illustration. In Section 4.3, we discuss how

our framework also captures a variety of other interesting max-min optimization settings.

Failure of Classical Methods

Various algorithms have been developed for achieving small regret in the standard GP optimization

problem. A prominent example is GP-UCB (Section 2.2), which chooses

xt ∈ argmax
x∈D

ucbt−1(x), ucbt−1(x) := μt−1(x) + β
1/2
t σt−1(x). (4.6)
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Chapter 4. Robust Optimization with Gaussian Processes

This algorithm is guaranteed to achieve sublinear cumulative regret with high probability1, for

a suitably chosen βt (see Theorem 2.2.1). While this is useful when x∗
ε = x∗

0, in general for a

given fixed ε 	= 0, these two decisions might not coincide, and hence minδ∈Δε(x∗
0)
f(x∗

0+ δ) can

be significantly smaller than minδ∈Δε(x∗
ε )
f(x∗

ε + δ). A visual example is given in Figure 4.1c,

where the selected point of GP-UCB for t = 20 is shown. This point nearly maximizes f , but it

is strictly suboptimal in the ε-stable sense. The same limitation applies to other BO strategies

(e.g., [HS12, HLHG14, BSKC16, WJ17, SJ17a, RMGO18]) whose goal is to identify the global

non-robust maximum x∗
0. In Section 4.4, we will see that more advanced baseline strategies also

perform poorly when applied to our problem.

4.1.2 Related Work

Numerous algorithms have been developed for GP optimization in recent years [SKKS10, HS12,

HLHG14, BSKC16, WJ17, SJ17a, RMGO18]. Beyond the standard setting, important exten-

sions have been considered including batch sampling [DKB14, GDHL16, CBRV13, AFF10],

contextual and time-varying settings [KO11, BSC16], safety requirements [SGBK15], and high

dimensional settings [KSP15, WLJK17, RSBC18], just to name a few.

Various forms of robustness in GP optimization have been considered previously. A prominent

example is that of outliers [MCTM18], in which certain function values are highly unreliable;

however, this is a separate issue from the one considered in this chapter, since in [MCTM18]

the returned point does not undergo any perturbation. Another related recent work is [BN17],

which assumes that the sampled points (rather than the returned one) are subject to uncertainty. In

addition to this difference, the uncertainty in [BN17] is random rather than adversarial, which is

complementary but distinct from our work. The same is true of a setting called unscented Bayesian
optimization in [NMCBJ16]. Moreover, no theoretical results are given in [BN17, NMCBJ16].

Our problem formulation is also related to other works on non-convex robust optimization,

particularly those of Bertsimas et al. [BNT10b, BNT10a]. In these works, a stable design x

is sought that solves minx∈D maxδ∈U f(x + δ). Here, δ resides in some uncertainty set U ,

and represents the perturbation against which the design x needs to be protected. Related

problems have also recently been considered in the context of adversarial training (e.g. [SND18]).

Compared to these works, our work bears the crucial difference that the objective function is

unknown, and we can only learn about it through noisy point evaluations (i.e. bandit feedback).

Other works, such as [CLSS17, Wil17, SWJ18, KMGG08, BMSC17b], have considered robust

optimization problems of the following form: For a given set of objectives {f1, . . . , fm} find

x achieving maxx∈D mini∈[m] fi(x). We discuss variations of our algorithm for this type of

formulation in Section 4.3.

1In this discussion, we take d(x,x′) = ‖x − x′‖2, so that ε = 0 recovers the standard non-stable regret from

Section 2.2
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4.1.3 Contributions

The main contributions of this chapter are:

• In Section 4.1.1, a variant of GP optimization is introduced in which the returned solution

is required to exhibit robustness to an adversarial perturbation.

• We demonstrate the failures of standard algorithms, and in Section 4.2, we introduce a new

algorithm STABLEOPT that overcomes these limitations.

• We provide a novel theoretical analysis characterizing the number of samples required

for STABLEOPT to attain a near-optimal robust solution, and we complement this with an

algorithm-independent lower bound (Sections 4.2.1 and 4.2.2).

• In Section 4.3, we provide several important variations of our max-min optimization

framework and theory, including connections and comparisons to previous works.

• In Section 4.4, we experimentally demonstrate a variety of potential applications of interest

on real-world data sets, and we show that STABLEOPT consistently succeeds in finding a

stable maximizer where several baseline methods fail.

4.2 Stable Algorithm and Theory

Our proposed algorithm, STABLEOPT, is described in Algorithm 7, and makes use of the

following confidence bounds depending on a parameter βt (cf., Lemma 3.6.1 below):

ucbt−1(x) := μt−1(x) + β
1/2
t σt−1(x), lcbt−1(x) := μt−1(x)− β

1/2
t σt−1(x). (4.7)

We refer to the point

x̃t = argmax
x∈D

min
δ∈Δε(x)

ucbt−1(x+ δ) (4.8)

as the one having the highest “stable” upper confidence bound. However, the queried point is

not x̃t, but instead x̃t + δt, where δt ∈ Δε(x̃t) is chosen to minimize the lower confidence

bound. As a result, the algorithm is based on two distinct principles: (i) optimism in the face of

uncertainty when it comes to selecting x̃t; (ii) pessimism in the face of uncertainty when it comes

to anticipating the perturbation of x̃t. The first of these is inherent to existing algorithms such

as GP-UCB, whereas the second is unique to the stable GP optimization problem. An example

illustration of STABLEOPT’s execution (sampling) is given in Figure 4.2.

We have left the final reported point x(T ) unspecified in Algorithm 7, as there are numerous

reasonable choices. The simplest choice is to simply return x(T ) = x̃T , but in our theory and

experiments, we will focus on x(T ) equaling the point in {x̃1, . . . , x̃T } with the highest lower

confidence bound.

59
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Algorithm 7 STABLEOPT [BSJC18]

Input: Domain D, GP(μ0, σ0, k), confidence bound parameters {βt}, stability parameter ε,
distance function d(·, ·)

1: for t = 1, 2, . . . , T do
2: Set

x̃t = argmax
x∈D

min
δ∈Δε(x)

ucbt−1(x+ δ).

3: Set δt = argminδ∈Δε(x̃t) lcbt−1(x̃t + δ)
4: Sample x̃t + δt, and observe yt = f(x̃t + δt) + zt
5: Update μt, σt, ucbt and lcbt according to (2.4) and (4.7), by including {(x̃t + δt, yt)}
6: end for

4.2.1 Upper Bound on Regret

As in the previous chapters, our analysis makes use of the maximum information gain under t

noisy measurements:

γt = max
x1,··· ,xt

1

2
log det(It + σ−2Kt). (2.10)

STABLEOPT depends on the exploration parameter βt, which determines the width of the

confidence bounds. In our main result, we set βt according to Lemma 3.6.1 which we recall here:

Lemma 3.6.1 ([CG17]). Fix f ∈ Fk(B), and consider the sampling model yt = f(xt)+ zt with
zt ∼ N (0, σ2) with independence between times. Under the choice

βt =

(
B + σ

√
2(γt−1 + log

e

ξ
)

)2

,

the following holds with probability at least 1− ξ:

lcbt−1(x) ≤ f(x) ≤ ucbt−1(x), ∀x ∈ D, ∀t ≥ 1. (3.33)

The following theorem upper bounds the performance of STABLEOPT under a suitable choice

of the recommended point x(T ).

Theorem 4.2.1. (Upper Bound) Fix ε, η > 0, B > 0, T ∈ Z+, and ξ ∈ (0, 1), and a distance
function d(x,x′), and suppose that

T

βTγT
≥ C1

η2
,

where C1 = 8/ log(1 + σ−2). For any f ∈ Fk(B), STABLEOPT with βt set as in Lemma 3.6.1
achieves rε(x(T )) ≤ η after T rounds with probability at least 1− ξ, where

x(T ) = x̃t∗ , t∗ = argmax
t=1,...,T

min
δ∈Δε(x̃t)

lcbt−1(x̃t + δ). (4.9)
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(a) t = 5 (b) t = 15

(c) t = 6 (d) t = 7 (e) t = 8

(f) t = 9 (g) t = 10 (h) t = 11

(i) t = 12 (j) t = 13 (k) t = 14

Figure 4.2: An execution of STABLEOPT on the running example. Figures 4.2a and 4.2b give an

example of the selection procedure of STABLEOPT at two different time steps. We observe that

after t = 15 steps, x̃t obtained in Eq. 4.8 corresponds to x∗
ε . The intermediate steps are presented

in the subsequent rows.

Proof. Recall that x̃t is the point computed by STABLEOPT in (4.8) at time t, and that δt
corresponds to the perturbation obtained in STABLEOPT (Line 3) at time t. In the following, we

condition on the event in Lemma 3.6.1 holding true, meaning that ucbt and lcbt provide valid

confidence bounds as per (3.33). As stated in the lemma, this holds with probability at least 1− ξ.
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By the definition of ε-instant regret, we have

rε(x̃t) = max
x∈D

min
δ∈Δε(x)

f(x+ δ)− min
δ∈Δε(xt)

f(x̃t + δ)

≤ max
x∈D

min
δ∈Δε(x)

f(x+ δ)− min
δ∈Δε(x̃t)

lcbt−1(x̃t + δ) (4.10)

= max
x∈D

min
δ∈Δε(x)

f(x+ δ)− lcbt−1(x̃t + δt) (4.11)

≤ max
x∈D

min
δ∈Δε(x)

ucbt−1(x+ δ)− lcbt−1(x̃t + δt) (4.12)

= min
δ∈Δε(x̃t)

ucbt−1(x̃t + δ)− lcbt−1(x̃t + δt) (4.13)

≤ ucbt−1(x̃t + δt)− lcbt−1(x̃t + δt) (4.14)

= 2β
1/2
t σt−1(x̃t + δt), (4.15)

where (4.10) and (4.12) follow from Lemma 3.6.1, (4.11) follows since δt minimizes lcbt−1 by

definition, (4.13) follows since x̃t maximizes the robust upper confidence bound by definition,

(4.14) follows by upper bounding the minimum by the specific choice δt ∈ Δε(xt), and (4.15)

follows since the upper and lower confidence bounds are separated by 2β
1/2
t σt−1(·) according to

their definitions in (4.7).

In fact, the analysis from (4.10) to (4.15) shows that the following pessimistic estimate of

rε(x̃t) is upper bounded by 2β
1/2
t σt−1(x̃t + δt):

rε(x̃t) = max
x∈D

min
δ∈Δε(x)

f(x+ δ)− min
δ∈Δε(x̃t)

lcbt−1(x̃t + δ). (4.16)

Unlike rε(x̃t), the algorithm has the required knowledge to identify the value of t ∈ {1, . . . , T}
with the smallest rε(x̃t). Specifically, the first term on the right-hand side of (4.16) does not

depend on t, so the smallest rε(x̃t) is achieved by x(T ) defined in (4.9). Since the minimum is

upper bounded by the average, it follows that

rε(x
(T )) ≤ rε(x

(T )) (4.17)

≤ 1

T

T∑
t=1

2β
1/2
t σt−1(x̃t + δt) (4.18)

≤ 2β
1/2
T

T

T∑
t=1

σt−1(x̃t + δt), (4.19)

where (4.19) uses the monotonicity of βT . Next, we claim that for

2
T∑
t=1

σt−1(x̃t + δt) ≤
√
C1TγT , (4.20)

where C1 = 8/ log(1+σ−2). In fact, this is a special case of the well-known result from [SKKS10].
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This result, i.e., [SKKS10, Lemma 5.4],2 upper bounds the sum of posterior standard deviations

of sampled points in terms of the information gain γT (recall that in round t, STABLEOPT samples

at location x̃t + δt). Combining (4.19)–(4.20) and re-arranging, we deduce that after T satisfies
T

βT γT
≥ C1

η2
, the ε-instant regret is at most η, thus completing the proof.

This result holds for general kernels, and for both finite and continuous D. Our analysis bounds

function values according to the confidence bounds in Lemma 3.6.1 analogously to GP-UCB

[SKKS10], but also addresses the non-trivial challenge of characterizing the perturbations δt.

Theorem 4.2.1 can be made more explicit by substituting bounds on γT ; in particular, we have

γT = O((log T )p+1) for the SE kernel, and γT = O(T
p(p+1)

2ν+p(p+1) log T ) for the Matérn-ν kernel

(see Section 2.2.1). The former yields T = O∗( 1
η2

(
log 1

η

)2p)
in Theorem 4.2.1 for constant

B, σ2, and ε (where O∗(·) hides dimension-independent log factors), which we will shortly see

nearly matches an algorithm-independent lower bound.

4.2.2 Lower Bound on Regret

Establishing lower bounds under general kernels and input domains is an open problem even in

the non-robust setting. Accordingly, the following theorem focuses on a more specific setting

than the upper bound: We let the input domain be [0, 1]p for some dimension p, and we focus on

the SE and Matérn kernels. In addition, we only consider the case that d(x,x′) = ‖x − x′‖2,

though extensions to other norms (e.g., �1 or �∞) follow immediately from the proof.

Theorem 4.2.2. (Lower Bound) Let D = [0, 1]p for some dimension p, and set the distance
function d(x,x′) = ‖x − x′‖2. Fix ε ∈ (

0, 12
)
, η ∈ (

0, 12
)

, B > 0, and T ∈ Z+. Suppose
there exists an algorithm that, for any f ∈ Fk(B), reports a point x(T ) achieving ε-regret
rε(x

(T )) ≤ η after T rounds w.p. at least 1 − ξ. Then, provided that η
B and ξ are sufficiently

small, we have the following:

1. For k = kSE, it is necessary that T = Ω
(
σ2

η2

(
log B

η

)p/2),

2. For k = kMatérn, it is necessary that T = Ω
(
σ2

η2

(
B
η

)p/ν)
.

Here we assume that the stability parameter ε, dimension p, target probability ξ, and kernel
parameters l, ν are fixed (i.e., not varying as a function of the parameters T , η, σ and B).

The proof is based on constructing a finite subset of “difficult” functions in Fk(B) and applying

lower bounding techniques from the multi-armed bandit literature, also making use of several

auxiliary results from the non-robust setting [SBC17]. More specifically, the functions in the

restricted class consist of narrow negative “valleys” that the adversary can perturb the reported

point into, but that are hard to identify until a large number of samples have been taken.

2More precisely, [SKKS10, Lemma 5.4] alongside an application of the Cauchy-Schwarz inequality as in

[SKKS10].
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For constant σ2 and B, the condition for the SE kernel simplifies to T = Ω
(

1
η2

(
log 1

η

)p/2)
,

thus nearly matching the upper bound T = O∗( 1
η2

(
log 1

η

)2p)
of STABLEOPT established above.

In the case of the Matérn kernel, more significant gaps remain between the upper and lower

bounds; similar gaps remain even in the standard (non-robust) setting as shown in Section 3.6.

4.3 Other Robust Settings and Variations of STABLEOPT

While the above problem formulation seeks robustness within an ε-ball corresponding to the

distance function d(·, ·), our algorithm and theory apply to a variety of seemingly distinct settings.

We outline a few such settings here; in Appendix 4.A, we give details of their derivations.

Robust Bayesian optimization. Algorithm 7 and Theorem 4.2.1 extend readily to the

Bayesian case (f ∼ GP(0, k(x,x′))). Since the proof of Theorem 4.2.1 is based on confi-

dence bounds, the only change required is selecting βt to be that used for the Bayesian setting

in [SKKS10]. As a result, our framework also captures the problem of adversarially robust BO.

All of the variations below apply to both the Bayesian and non-Bayesian settings.

Robustness to unknown parameters. Consider the scenario where an unknown function

f : D × Θ → R has a bounded RKHS norm under some composite kernel k((x,θ), (x′,θ′)).
Some special cases ([KO11]) include

k((x,θ), (x′,θ′)) = k(x,x′) + k(θ,θ′) and k((x,θ), (x′,θ′)) = k(x,x′)k(θ,θ′).

The posterior mean μt(x,θ) and variance σ2
t (x,θ) conditioned on the previous observations

(x1,θ1, y1), ..., (xt−1,θt−1, yt−1) are computed analogously to (2.4).

A robust optimization formulation in this setting is to seek x that solves

max
x∈D

min
θ∈Θ

f(x,θ), (4.21)

i.e., we seek to find a configuration x that is robust against any possible parameter vector θ ∈ Θ.

Potential applications of this setup include the following:

• In areas such a robotics, we may have numerous parameters to tune (given by x and θ

collectively), but when it comes to implementation, some of them (i.e., only θ) become out

of our control. Hence, we need to be robust against whatever values they may take.

• We wish to tune hyperparameters in order to make an algorithm work simultaneously for a

number of distinct data types that bear some similarities. The data types are represented by

θ, and we can choose the data type to our liking during the optimization stage.

STABLEOPT can be used to solve (4.21); we maintain θt, and modify the main steps to

xt ∈ argmax
x∈D

min
θ∈Θ

ucbt−1(x,θ) and θt ∈ argmin
θ∈Θ

lcbt−1(xt,θ). (4.22)
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4.3. Other Robust Settings and Variations of STABLEOPT

At each time step, STABLEOPT receives a noisy observation yt = f(xt,θt) + zt, which is

used with (xt,θt) for computing the posterior. As explained in Appendix 4.A, the guarantee

rε(x
(T )) ≤ η in Theorem 4.2.1 is replaced by

min
θ∈Θ

f(x(T ),θ) ≥ max
x∈D

min
θ∈Θ

f(x,θ)− η.

Robust estimation. Continuing with the consideration of a composite kernel on (x,θ),

we consider the following practical problem variant proposed in [BNT10b]. Let θ̄ ∈ Θ be

an estimate of the true problem coefficient θ∗ ∈ Θ. Since, θ̄ is an estimate, the true co-

efficient satisfies θ∗ = θ̄ + δθ, where δθ represents uncertainty in θ̄. Often, practitioners

solve maxx∈D f(x, θ̄) and ignore the uncertainty. As a more sophisticated approach, we let

Δε(θ̄) =
{
θ − θ̄ : θ ∈ Θ and d(θ̄,θ) ≤ ε

}
, and consider the following robust problem

formulation: maxx∈D minδθ∈Δε(θ̄) f(x, θ̄ + δθ). For the given estimate θ̄, the main steps of

STABLEOPT in this setting are

xt ∈ argmax
x∈D

min
δθ∈Δε(θ̄)

ucbt−1(x, θ̄ + δθ) and δθ,t ∈ argmin
δθ∈Δε(θ̄)

lcbt−1(xt, θ̄ + δθ), (4.23)

and the noisy observations take the form yt = f(xt, θ̄ + δθ,t) + zt. The guarantee rε(x
(T )) ≤ η

in Theorem 4.2.1 is replaced by

min
δθ∈Δε(θ̄)

f(x(T ), θ̄ + δθ) ≥ max
x∈D

min
δθ∈Δε(θ̄)

f(x, θ̄ + δθ)− η.

Robust group identification. In some applications, it is natural to partition D into disjoint

subsets, and search for the subset with the highest worst-case function value (see Section 4.4 for

a movie recommendation example). Letting G = {G1, . . . , Gk} denote the groups that partition

the input space, the robust optimization problem is given by maxG∈G minx∈G f(x), i.e., the

algorithm reports a group G(T ). The main steps of STABLEOPT are given by

Gt ∈ argmax
G∈G

min
x∈G

ucbt−1(x) and xt ∈ argmin
x∈Gt

lcbt−1(x), (4.24)

and the observations are of the form yt = f(xt) + zt as usual. The guarantee rε(x
(T )) ≤ η in

Theorem 4.2.1 is replaced by

min
x∈G(T )

f(x) ≥ max
G∈G

min
x∈G

f(x)− η.

The preceding variations of STABLEOPT, as well as their resulting variations of Theorem

4.2.1, follow by substituting certain (unconventional) choices of d(·, ·) and ε into Algorithm 7 and

Theorem 4.2.1, with (x,θ) in place of x where appropriate. The details are given in Section 4.A.
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4.4 Experimental Evaluation

In this section, we experimentally validate the performance of STABLEOPT by comparing against

several baselines. Each algorithm that we consider may distinguish between the sampled point
(i.e., the point that produces the noisy observation yt) and the reported point (i.e., the point

believed to be near-optimal in terms of ε-stability). For STABLEOPT, as described in Algorithm

7, the sampled point is x̃t+ δt, and the reported point after time t is the one in {x̃1, . . . , x̃t} with

the highest value of minδ∈Δε(x̃t) lcbt(x̃t + δ).3 In addition, we consider the following baselines:

• GP-UCB. We consider GP-UCB to be a good representative of the wide range of existing

methods that search for the non-robust global maximum.

• MAXIMIN-GP-UCB. We consider a natural generalization of GP-UCB in which, at each

time step, the sampled and reported point are both given by

xt = argmax
x∈D

min
δ∈Δε(x)

ucbt−1(x+ δ).

• STABLE-GP-RANDOM. The sampling point xt at every time step is chosen uniformly at

random, while the reported point at time t is chosen to be the point among the sampled

points {x1, . . . ,xt} according to the same rule as the one used for STABLEOPT.

• STABLE-GP-UCB. The sampled point is given by the GP-UCB rule, while the reported

point is again chosen in the same way as in STABLEOPT.

As observed in e.g. [SKKS10, BSKC16]), the theoretical choice of βt is overly conservative. We

therefore adopt a constant value of β
1/2
t = 2.0 in each of the above methods, which we found to

provide a suitable exploration/exploitation trade-off for each of the above algorithms.

Given a reported point x(t) at time t, the performance metric is the ε-regret rε(x
(t)) given in

(4.4). Two observations are in order: (i) All the baselines are heuristic approaches for our problem,

and they do not have guarantees in terms of near-optimal stability; (ii) We do not compare against

other standard BO methods, as their performance is comparable to that of GP-UCB; in particular,

they suffer from exactly the same pitfalls described at the end of Section 4.1.1.

Synthetic function. We consider the synthetic function from [BNT10b] (see Figure 4.3a),

given by

fpoly(x, y) = −2x6 + 12.2x5 − 21.2x4 − 6.2x+ 6.4x3 + 4.7x2 − y6 + 11y5

− 43.3y4 + 10y + 74.8y3 − 56.9y2 + 4.1xy + 0.1y2x2 − 0.4y2x− 0.4x2y.

(4.25)

3This is slightly different from Theorem 4.2.1, which uses the confidence bound lcbτ−1 for xτ instead of adopting

the common bound lcbt. We found the latter to be more suitable when the kernel hyperparameters are updated online,

whereas Theorem 4.2.1 assumes a known kernel. Theorem 4.2.1 can be adapted to use lcbt alone by intersecting the

confidence bounds at each time instant so that they are monotonically shrinking [GCHK13].
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Figure 4.3: Synthetic function from [BNT10b] (in (a)), counterpart with worst-case perturbations

(in (b)), and the performance (in (c)). STABLEOPT significantly outperforms the baselines.

The decision space is a uniformly spaced grid of points in ((−0.95, 3.2), (−0.45, 4.4)) of size

104. There exist multiple local maxima, and the global maximum is at (x∗f , y
∗
f ) = (2.82, 4.0),

with fpoly(x
∗
f , y

∗
f ) = 20.82. Similarly as in [BNT10b], given stability parameters δ = (δx, δy),

where ‖δ‖2 ≤ 0.5, the robust optimization problem is

max
(x,y)∈D

gpoly(x, y), gpoly(x, y) := min
(δx,δy)∈Δ0.5(x,y)

fpoly(x− δx, y − δy).

A plot of gpoly is shown in Fig. 4.3b. The global maximum is attained at (x∗g, y∗g) = (−0.195, 0.284)

and gpoly(x
∗
g, y

∗
g) = −4.33, and the inputs maximizing f yield gpoly(x

∗
f , y

∗
f ) = −22.34.

We initialize the above algorithms by selecting 10 uniformly random inputs (x, y), keeping

those points the same for each algorithm. The kernel adopted is a SE ARD kernel. We randomly

sample 500 points whose function value is above −15.0 to learn the GP hyperparameters via

maximum likelihood, and then run the algorithms with these hyperparameters. The observation

noise standard deviation is set to 0.1, and the number of sampling rounds is T = 100. We repeat

the experiment 100 times and show the average performance in Figure 4.3c. We observe that

STABLEOPT significantly outperforms the baselines. In the later rounds, the baselines report

points that are close to the global optimizer, which is suboptimal with respect to the ε-regret.
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Figure 4.4: Experiment on the Zürich lake dataset; In the later rounds STABLEOPT is the only

method that reports a near-optimal ε-stable point.

Lake data. We consider an application regarding environmental monitoring of inland waters,

using a data set containing 2024 in situ measurements of chlorophyll concentration within a

vertical transect plane, collected by an autonomous surface vessel in Lake Zürich. This dataset

was considered in the previous chapter to detect regions of high concentration. The goal was to

locate all regions whose concentration exceeds a pre-defined threshold.

Here we consider a different goal: We seek to locate a region of a given size such that the

concentration throughout the region is as high as possible (in the max-min sense). This is of

interest in cases where high concentration only becomes relevant when it is spread across a

sufficiently wide area. We consider rectangular regions with different pre-specified lengths in

each dimension:

ΔεD,εL(x) = {x′ − x : x′ ∈ D, |xD − x′D| ≤ εD ∩ |xL − x′L| ≤ εL}, (4.26)

where x = (xD, xL) and x′ = (x′D, x
′
L) indicate the depth and length, and we denote the stability

parameters by (εD, εL). This corresponds to d(·, ·) being a weighted �∞-norm.

We evaluate each of the algorithms on a 50× 50 grid of points, with the corresponding values

coming from the Gaussian process posterior that was derived using the originally collected data.
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Figure 4.5: Robust robot pushing experiment (Left) and MovieLens-100K experiment (Right)

We use the Matérn-5/2 ARD kernel, setting its hyperparameters by maximizing the likelihood on a

second (smaller) available dataset. The parameters εD and εL are set to 1.0 and 100.0, respectively.

The stability requirement changes the global maximum and its location, as can be observed in

Figure 4.4. The number of sampling rounds is T = 120, and each algorithm is initialized with

the same 10 random data points and corresponding observations. The performance is averaged

over 100 different runs, where every run corresponds to a different random initialization. In this

experiment, STABLE-GP-UCB achieves the smallest ε-regret in the early rounds, while in the

later rounds STABLEOPT is the only method that reports a near-optimal ε-stable point.

Robust robot pushing. We consider the deterministic version of the robot pushing objective

from [WJ17], with publicly available code.4 The goal is to find a good pre-image for pushing an

object to a target location. The 3-dimensional function takes as input the robot location (rx, ry)

and pushing duration rt, and outputs f(rx, ry, rt) = 5− dend, where dend is the distance from

the pushed object to the target location. Here, D is continuous: rx, ry ∈ [−5, 5] and rt ∈ [1, 30].

We consider a twist on this problem in which there is uncertainty regarding the precise target, so

one seeks a set of input parameters that is robust against a number of different potential locations.

In the simplest case, the number of such locations is finite, meaning we can model this problem

as r ∈ argmaxr∈D mini∈[m] fi(r), where each fi corresponds to a different target location, and

[m] = {1, . . . ,m}. This is a special case of (4.21) with a finite set Θ of cardinality m.

In our experiment, we use m = 2. Our goal is to find an input r that is robust against two

different target locations. The first one is uniform over the domain, and the second is uniform over

the �1-ball centered at the first target location with radius r = 2.0. We initialize each algorithm

with one random sample from each fi. We run each method for T = 100, and for a reported

point rt at time t, we compare the methods in terms of the robust objective mini∈[m] fi(rt).

We perform a fully Bayesian treatment of the hyperparameters, sampling every 10 rounds5 as

in [HLHG14, WJ17]. We average over 30 random pairs of {f1, f2} and report the results in

Fig. 4.5. STABLEOPT noticeably outperforms its competitors except in some of the early rounds.

4https://github.com/zi-w/Max-value-Entropy-Search
5We note that the apparent discontinuities in certain curves are a result of the hyperparmeter re-estimation.
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Group movie recommendation. Our goal in this task is to recommend a group of movies to

a user such that every movie in the group is to their liking. We use the MovieLens-100K dataset,

which consists of 1682 movies and 943 users. The data takes the form of an incomplete matrix R
of ratings, where Ri,j is the rating of movie i given by the user j. To impute the missing rating

values, we apply non-negative matrix factorization with p = 15 latent factors. This produces

a feature vector for each movie mi ∈ R
p and user uj ∈ R

p. We use 10% of the user data for

training, in which we fit a Gaussian distribution P (u) = N (u|μ,Σ). For a given user uj in

the test set, P (u) is considered to be a prior, and the objective is given by fj(mi) = mT
i uj ,

corresponding to a GP with a linear kernel. We cluster the movie feature vectors into k = 80

groups, i.e., G = {G1, . . . , Gk}, via the k-means algorithm. Similarly to (4.24), the robust

optimization problem for a given user j is:

max
G∈G

gj(G), gj(G) = min
mi∈G

fj(mi). (4.27)

That is, for the user with feature vector uj , our goal is to find the group of movies to recommend

such that the entire collection of movies is robust with respect to the user’s preferences.

In this experiment, we compare STABLEOPT against GP-UCB and MAXIMIN-GP-UCB. We

report the ε-regret given by gj(G
∗)− gj(G

(t)) where G∗ is the maximizer of (4.27), and G(t) is

the reported group after time t. Since we are reporting groups rather than points, the baselines

require slight modifications: At time t, GP-UCB selects the movie mt (i.e., asks for the user’s

rating of it) and reports the group G(t) to which mt belongs. MAXIMIN-GP-UCB reports

G(t) ∈ argmaxG∈G minm∈G ucbt−1(m) and then selects mt ∈ argminm∈G(t) ucbt−1(m).

Finally, STABLEOPT reports a group in the same way as MAXIMIN-GP-UCB, but selects mt

analogously to (4.24). In Figure 4.5, we show the average ε-regret, where the average is taken

over 500 different test users. In this experiment, the average ε-regret decreases rapidly after only

a small number of rounds. Among the three methods, STABLEOPT is the only one that finds the

optimal movie group.
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4.A Details on Variations from Section 4.3

We claim that the STABLEOPT variations and theoretical results outlined in Section 4.3 are in fact

special cases of Algorithm 7 and Theorem 4.2.1, despite being seemingly quite different. The

idea behind this claim is that Algorithm 7 and Theorem 4.2.1 allow for the “distance” function

d(·, ·) to be completely arbitrary, so we may choose it in rather creative/unconventional ways.

In more detail, we have the following:

• For the unknown parameter setting maxx∈D minθ∈Θ f(x,θ), we replace x in the original

setting by the concatenated input (x,θ), and set

d((x,θ), (x′,θ′)) = ‖x− x′‖2.

If we then set ε = 0, we find that the input x experiences no perturbation, whereas θ may

be perturbed arbitrarily, thereby reducing (4.3) to

max
x∈D

min
θ∈Θ

f(x,θ)

as desired.

• For the robust estimation setting, we again use the concatenated input (x,θ). To avoid

overloading notation, we let d0(θ,θ
′) denote the distance function (applied to θ alone)

adopted for this case in Section 4.3. We set

d((x,θ), (x′,θ′)) =

{
d0(θ,θ

′) x = x′

∞ x 	= x′.

Due to the second case, the input x experiences no perturbation, since doing so would

violate the distance constraint of ε. We are left with x = x′ and d0(θ,θ
′) ≤ ε, as required.

• For the grouped setting maxG∈G minx∈G f(x), we adopt the function

d(x,x′) = 1{x and x′ are in different groups},

and set ε = 0. Considering the formulation in (4.3), we find that any two inputs x and x′

yield the same ε-stable objective function, and hence, reporting a point x is equivalent to

reporting its group G. As a result, (4.3) reduces to the desired formulation

max
G∈G

min
x∈G

f(x).

The variations of STABLEOPT in (4.22)–(4.24), as well as the corresponding theoretical results

outlined in Section 4.3, follow immediately by substituting the respective choices of d(·, ·) and ε

above into Algorithm 7 and Theorem 4.2.1. Note that in the first two examples, the definition of

γt in (2.10) is modified to take the maximum over not only x1, · · · ,xt, but also θ1, · · · ,θt.
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Figure 4.6: Illustration of functions f1, . . . , f5 equal to a common function shifted by various

multiples of a given parameter w. In the ε-stable setting, there is a wide region (shown in gray

for the dark blue curve f3) within which the perturbed function value equals −2η.

4.B Proofs

4.B.1 Lower Bound (Proof of Theorem 4.2.2)

Our lower bounding analysis builds heavily on that of the non-robust optimization setting with

f ∈ Fk(B) studied in [SBC17], but with important differences. Roughly speaking, the analysis

of [SBC17] is based on the difficulty of finding a very narrow “bump” of height 2η in a function

whose values are mostly close to zero. In the ε-stable setting, however, even the points around

such a bump will be adversarially perturbed to another point whose function value is nearly zero.

Hence, all points are essentially equally bad.

To overcome this challenge, we consider the reverse scenario: Most of the function values

are still nearly zero, but there exists a narrow valley of depth −2η. This means that every point

within an ε-ball around the function minimizer will be perturbed to the point with value −2η.

Hence, a constant fraction of the volume is still 2η-suboptimal, and it is impossible to avoid this

region with high probability unless the time horizon T is sufficiently large. An illustration is

given in Figure 4.6, with further details below. We now proceed with the formal proof.

Preliminaries

Recall that we are considering an arbitrary given (deterministic) Gaussian process optimization

algorithm. More precisely, such an algorithm consists of a sequence of decision functions that

return a sampling location xt based on y1, . . . , yt−1, and an additional decision function that

reports the final point x(T ) based on y1, . . . , yT . The points x1, . . . ,xt−1 (or x1, . . . ,xT ) do not

need to be treated as additional inputs to these functions, since (x1, . . . ,xt−1) is a deterministic

function of (y1, . . . , yt−1).

72



4.B. Proofs

We first review several useful results and techniques from [SBC17]:

• We lower bound the worst-case ε-regret within Fk(B) by the ε-regret averaged over a

suitably-designed finite collection {f1, . . . , fM} ⊂ Fk(B) of size M .

• We choose each fm(x) to be a shifted version of a common function g(x) on R
p. Specifi-

cally, each fm(x) is obtained by shifting g(x) by a different amount, and then cropping to

D = [0, 1]p. For our purposes, we require g(x) to satisfy the following properties:

1. The RKHS norm in R
p is bounded, ‖g‖k ≤ B;

2. We have (i) g(x) ∈ [−2η, 2η] with minimum value g(0) = −2η, and (ii) there is a

“width” w such that g(x) > −η for all ‖x‖∞ ≥ w;

3. There are absolute constants h0 > 0 and ζ > 0 such that g(x) = 2η
h0
h
(xζ

w

)
for some

function h(z) that decays faster than any finite power of ‖z‖−1
2 as ‖z‖2 → ∞.

Letting g(x) be such a function, we construct the M functions by shifting g(x) so that each

fm(x) is centered on a unique point in a uniform grid, with points separated by w in each

dimension. Since D = [0, 1]p, one can construct

M =
⌊( 1

w

)p⌋
(4.28)

such functions. We will use this construction with w � 1, so that there is no risk of having

M = 0, and in fact M can be assumed larger than any desired absolute constant.

• It is shown in [SBC17] that the above properties6 can be achieved with

M =

⌊(
r
√
log B(2πl2)p/4h(0)

2η

ζπl

)p⌋
. (4.29)

in the case of the SE kernel, and with

M =
⌊(Bc3

η

)p/ν⌋
, (4.30)

in the case of the Matérn kernel, where

c3 :=
(r
ζ

)ν ·
(

c
−1/2
2

2(8π2)(ν+p/2)/2

)
, (4.31)

and where c2 > 0 is an absolute constants. Note that these values of M amount to choosing

w in (4.28), and the assumption of sufficiently small η
B in the theorem statement ensures

that M � 1 (or equivalently w � 1) as stated above.

6Here g(x) plays the role of −g(x) in [SBC17] due to the discussion at the start of this appendix, but otherwise

the construction is identical.
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• Property 2 above ensures that the “robust” function value minδ∈Δε(x) f(x) equals −2η for

any x whose ε-neighborhood includes the minimizer xmin of f , while being −η or higher

for any input whose entire ε-neighborhood is separated from xmin by at least w. For w � 1

and ε < 0.5, a point of the latter type is guaranteed to exist, which implies

rε(x) ≥ η (4.32)

for any x whose ε-neighborhood includes xmin.

In addition, we introduce the following notation, also used in [SBC17]:

• The probability density function of the output sequence y = (y1, . . . , yT ) when the

underlying function is fm is denoted by Pm(y). We also define f0(x) = 0 to be the

zero function, and define P0(y) analogously for the case that the optimization algorithm

is run on f0. Expectations and probabilities (with respect to the noisy observations) are

similarly written as Em, Pm, E0, and P0 when the underlying function is fm or f0. On the

other hand, in the absence of a subscript, E[·] and P[·] are taken with respect to the noisy

observations and the random function f drawn uniformly from {f1, . . . , fM} (recall that

we are lower bounding the worst case by this average).

• Let {Rm}Mm=1 be a partition of the domain into M regions according the above-mentioned

uniform grid, with fm taking its minimum value of −2η in the centre of Rm. Let jt be the

index at time t such that xt falls into Rjt ; this can be thought of as a quantization of xt.

• Define the maximum (absolute) function value within a given region Rj as

vjm := max
x∈Rj

|fm(x)|, (4.33)

and the maximum KL divergence to P0 within the region as

D
j
m := max

x∈Rj

D(P0(·|x)‖Pm(·|x)), (4.34)

where Pm(y|x) is the distribution of an observation y for a given selected point x under

the function fm, and similarly for P0(y|x).

• Let Nj ∈ {0, . . . , T} be a random variable representing the number of points from Rj that

are selected throughout the T rounds.

Next, we present several useful lemmas. The following well-known change-of-measure result,

which can be viewed as a form of Le Cam’s method, has been used extensively in both discrete

and continuous bandit problems.

Lemma 4.B.1. [ACBFS98, p. 27] For any function a(y) taking values in a bounded range [0, A],
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4.B. Proofs

we have ∣∣Em[a(y)]− E0[a(y)]
∣∣ ≤ AdTV(P0, Pm) (4.35)

≤ A
√
D(P0‖Pm), (4.36)

where dTV(P0, Pm) = 1
2

∫
RT |P0(y)− Pm(y)| dy is the total variation distance.

We briefly remark on some slight differences here compared to [ACBFS98, p. 27]. There, only

Em[a(y)]−E0[a(y)] is upper bounded in terms of dTV(P0, Pm), but one easily obtains the same

upper bound on E0[a(y)]− Em[a(y)] by interchanging the roles of P0 and Pm. The step (4.36)

follows from Pinsker’s inequality, dTV(P0, Pm) ≤
√

D(P0‖Pm)
2 , and by upper bounding 1√

2
≤ 1

to ease the notation.

The following result simplifies the divergence term in (4.36).

Lemma 4.B.2. [SBC17, Eq. (44)] Under the preceding definitions, we have

D(P0‖Pm) ≤
M∑
j=1

E0[Nj ]D
j
m. (4.37)

The following well-known property gives a formula for the KL divergence between two

Gaussians.

Lemma 4.B.3. [SBC17, Eq. (36)] For P1 and P2 being Gaussian with means (μ1, μ2) and a
common variance σ2, we have

D(P1‖P2) =
(μ1 − μ2)

2

2σ2
. (4.38)

Finally, we have the following technical result regarding the “needle-in-haystack” type function

constructed above.

Lemma 4.B.4. [SBC17, Lemma 7] The functions {fm}Mm=1 corresponding to (4.29)–(4.30) are
such that the quantities vjm satisfy

∑M
m=1(v

j
m)2 = O(η2) for all j.

Analysis of the average ε-stable regret

Let Jbad(m) be the set of j such that all x ∈ Rj yield minδ∈Δε(x) f(x+ δ) = −2η when the

true function is fm, and define Rbad(m) = ∪j∈Jbad(m)Rj . By the ε-regret lower bound in (4.32),
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we have

Em[rε(x
(T ))] ≥ ηPm[x(T ) ∈ Rbad(m)] (4.39)

≥ η

(
P0[x

(T ) ∈ Rbad(m)]−
√
D(P0‖Pm)

)
(4.40)

≥ η

(
P0[x

(T ) ∈ Rbad(m)]−
√√√√ M∑

j=1

E0[Nj ]D
j
m

)
, (4.41)

where (4.40) follows from Lemma 4.B.1 with a(y) = 1{x(T ) ∈ Rbad(m)} and A = 1 (recall

that x(T ) is a function of y = (y1, . . . , yT )), and (4.41) follows from Lemma 4.B.2. Averaging

over m uniform in {1, . . . ,M}, we obtain

E[rε(x
(T ))] ≥ η

(
1

M

M∑
m=1

P0[x
(T ) ∈ Rbad(m)]− 1

M

M∑
m=1

√√√√ M∑
j=1

E0[Nj ]D
j
m

)
. (4.42)

We proceed by bounding the two terms separately.

• We first claim that

1

M

M∑
m=1

P0[x
(T ) ∈ Rbad(m)] ≥ C1 (4.43)

for some C1 > 0. To show this, it suffices to prove that any given x(T ) ∈ D is in at least a

constant fraction of the Rbad(m) regions, of which there are M . This follows from the fact

that the ε-ball centered at

xm,min = argmin
x∈D

fm(x)

takes up a constant fraction of the volume of D, where the constant depends on both the

stability parameter ε and the dimension p. A small caveat is that because the definition

of Rbad insists that the every point in the region Rj is within distance ε of xm,min, the

left-hand side of (4.43) may be slightly below the relevant ratio of volumes above. However,

since Theorem 4.2.2 assumes that ε
B is sufficiently small, the choices of M in (4.29) and

(4.30) ensure that M is sufficiently large for this “quantization” effect to be negligible.

• For the second term in (4.42), we claim that

1

M

M∑
m=1

√√√√ M∑
j=1

E0[Nj ]D
j
m ≤ C2

η

σ

√
T

M
(4.44)
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for some C2 > 0. To see this, we write

1

M

M∑
m=1

√√√√ M∑
j=1

E0[Nj ]D
j
m

= O

(
1

σ

)
· 1

M

M∑
m=1

√√√√ M∑
j=1

E0[Nj ](v
j
m)2 (4.45)

≤ O

(
1

σ

)
·
√√√√ 1

M

M∑
m=1

M∑
j=1

E0[Nj ](v
j
m)2 (4.46)

= O

(
1

σ

)
·
√√√√ 1

M

M∑
j=1

E0[Nj ]

( M∑
m=1

(vjm)2
)

(4.47)

= O

(
η√
Mσ

)
·
√√√√ M∑

j=1

E0[Nj ] (4.48)

= O

( √
Tη√
Mσ

)
, (4.49)

where (4.45) follows since the divergence D(P0(·|x)‖Pm(·|x)) associated with a point

x having value v(x) is
v(x)2

2σ2 (cf., (4.38)), (4.46) follows from Jensen’s inequality, (4.48)

follows from Lemma 4.B.4, and (4.49) follows from
∑

j Nj = T .

Substituting (4.43) and (4.44) into (4.42), we obtain

E[rε(x
(T ))] ≥ η

(
C1 − C2

η

σ

√
T

M

)
, (4.50)

which implies that the regret is lower bounded by Ω(η) unless T = Ω
(
Mσ2

η2

)
. Substituting M

from (4.29) and (4.30), we deduce that the conditions on T in the theorem statement are necessary

to achieve average regret E[rε(x
(T ))] = O(η) with a sufficiently small implied constant.

From average to high-probability regret

Recall that we are considering functions whose values lie in the range [−2η, 2η], implying

that rε(x
(T )) ≤ 4η. Letting Tη be the lower bound on T derived above for achieving average

regret O(η) (i.e., we have E[r
(Tη)
ε ] = Ω(η)), it follows from the reverse Markov inequality (i.e.,

Markov’s inequality applied to the random variable 4ε− r
(Tη)
ε ) that

P[rε(x
(Tη)) ≥ cη] ≥ Ω(η)− cη

4η − cη
(4.51)
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for any c > 0 sufficiently small for the numerator and denominator to be positive. The right-hand

side is lower bounded by a constant for any such c, implying that the probability of achieving

ε-regret at most cη cannot be arbitrarily close to one. By renaming η as η′, it follows that in order

to achieve some target ε-stable regret η′ with probability sufficiently close to one, a lower bound

of the same form as the average regret bound holds. In other words, the conditions on T in the

theorem statement remain necessary also for the high-probability regret.

We emphasize that Theorem 4.2.2 concerns the high-probability regret when “high probability”

means sufficiently close to one as a function of ε, p, and the kernel parameters (but still constant

with respect to T and η). We do not claim a lower bound under any particular given success

probability (e.g., η-optimality with probability at least 3
4 ).
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5 Gaussian Process Optimization with
Time-Varying Reward Function

In the previous chapters, we considered the problems in which the objective function was time-

invariant, i.e., the unknown reward function was static and did not vary with time. However, in

many practical applications, the function to be optimized is not static. In the time-varying setting,

the performance of standard algorithms may deteriorate, since these continue to treat stale data as

being equally important as fresh data. In this chapter, we consider the Bayesian optimization with

bandit feedback, adopting a formulation that allows for the reward function to vary with time.

This chapter is based on the joint work with Jonathan Scarlett and Volkan Cevher [BSC16].

5.1 Introduction

In the previous chapters, we discussed the theory and methods for Bayesian/bandit optimization

problems, where one seeks to sequentially select a sequence of points to optimize an unknown

reward function from noisy samples [SKKS10, BCB12, LR85]. Such problems have numerous

applications, including sensors networks, recommender systems, and finance. A key challenge is

to rigorously trade-off between exploration, i.e., learning the behavior of the function across the

whole domain, and exploitation, i.e., selecting points that have previously given high rewards.

In the vast majority of applications, the function to be optimized is not static, but varies with

time: In sensor networks, measured quantities such as temperature undergo fluctuations; in

recommender systems, the users’ preferences may change according to external factors; similarly,

financial markets are highly dynamic. In such cases, the performance of standard algorithms may

deteriorate, since these treat old data as being equally important as new data. The development of

algorithms and theory to handle time variations is therefore crucial. In this chapter, we take a

novel approach to handling time variations, modeling the reward function as a Gaussian process

(GP) that varies according to a simple Markov model. We propose algorithms based on the upper

confidence bound strategy with the ability to forget about old data. Furthermore, we analyze their

theoretical performance and evaluate them on various time-varying datasets.
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Figure 5.1: Examples of GP functions when ε = 0.01: (Left) SE kernel (l = 0.2); (Right) Matérn

kernel (ν = 1.5). Note that the location of the maximum changes significantly at distant times.

5.1.1 Problem Statement

We seek to sequentially optimize an unknown reward function ft over a compact, convex subset

D ⊂ R
p.1 At time t, we can interact with ft only by querying at some point xt ∈ D, after

which we observe a noisy observation yt = ft(xt) + zt, where zt ∼ N (0, σ2). We assume that

the noise realizations at different time instants are independent. The goal is to maximize the

reward via a suitable trade-off between exploration and exploitation. This problem is ill-posed for

arbitrary reward functions even in the time-invariant setting, and it is thus necessary to introduce

suitable smoothness assumptions. We model the reward function as a sample from a Gaussian

process f ∼ GP(0, k), where its smoothness is dictated by the choice of kernel function k.

Let k : D ×D → R+ be a kernel function, and let GP(μ, k) be a Gaussian process [RW06]

with mean μ ∈ R
p and kernel k. As in the previous chapters, we assume bounded variance:

∀x ∈ D, k(x,x) ≤ 1. Two common kernels are squared exponential and Matérn given in (2.2).

Letting g1, g2, . . . be independent random functions on D with gi ∼ GP(0, k), the reward

functions are modeled as follows:

f1(x) = g1(x) (5.1)

ft+1(x) =
√
1− ε ft(x) +

√
ε gt+1(x) ∀t ≥ 2, (5.2)

where ε ∈ [0, 1] quantifies how much the function changes after every time step. If ε = 0 then we

recover the standard time-invariant model [SKKS10], whereas if ε = 1 then the reward functions

are independent between time steps. Importantly, for any choice of ε we have for all t that

ft ∼ GP(0, k). See Figure 5.1 for an illustration.

From a practical perspective, this model has the desirable property of only having one additional

hyperparameter ε compared to the standard GP model, thus facilitating the learning process.

1Finite domains were also handled in the time-invariant setting (see Theorem 2.2.1), and all of our upper bounds

have counterparts for such scenarios that are in fact simpler to obtain compared to the compact case.
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It serves as a suitable model for reward functions that vary at a steady rate, though we will see

numerically in Section 5.4 that the resulting algorithms are also effective more generally.

As noted in regression studies in [VVLGS12, VVSLG12], our model is equivalent to a spa-
tiotemporal kernel model with temporal kernel (1 − ε)|t1−t2|/2. We expect our techniques to

apply similarly to other temporal kernels, particularly stationary kernel functions that depend

only on the time difference |t1− t2|, but we focus on (5.1)–(5.2) for concreteness. Spatiotemporal

kernels can also be considered in the contextual bandit setting [KO11], but to our knowledge, no

regret bounds have been given that explicitly characterize the dependence on the function’s rate

of variation, as is done in our main result.

Let x∗
t denote a maximizer of ft at time t, i.e., x∗

t = argmaxx ft(x), and suppose that our

choice at time t is xt. Then the instantaneous regret we incur at time t is rt = ft(x
∗
t )− ft(xt).

We are interested in minimizing the cumulative regret RT =
∑T

t=1 rt.

These definitions coincide with those for the time-invariant setting (cf. Eq. (2.6)) when ε = 0.

Note that we do not aim to merely compete with fixed strategies, but instead to track the maximum

of ft for all t. In our setting, a notion of regret based on competing with a fixed strategy would

typically lead to a negative cumulative regret. In other words, all fixed strategies perform poorly.

In time-invariant scenarios, as well as several time-varying ones, algorithms are typically

designed to achieve sublinear regret. In our setting, we will show that for fixed ε, the regret

RT must in fact be Ω(T ) (in Theorem 5.3.1). Intuitively, this is because if the function changes

significantly at each time step, one cannot expect to track its maximum to arbitrary precision.

However, we emphasize that what is really of interest is the joint dependence of RT on T and

ε, and we thus seek regret bounds of the form O∗(Tψ(ε)) for some function ψ(ε) that vanishes

as ε → 0. Our approach is analogous to Slivkins and Upfal [SU08], who considered another

time-varying setting with unavoidable Ω(T ) regret for any fixed function variation parameter,

and focused on the behavior in the implied constant in the limit as that parameter vanishes.

For the squared exponential and Matérn kernels, we obtain regret bounds of the form O∗(Tεα)
for some α > 0 (cf., Corollary 5.3.1), which can be viewed as being sublinear whenever

ε = O(T−c) for some c > 0. We observe that when c < 1, the correlation between f1(x) and

fT (x) is negligible, meaning that the corresponding maximum may (and typically will) change

drastically over the duration of the time horizon, e.g., see Figure 5.1.

Limitations of GP-UCB

As in the previous chapters, we recall GP-UCB (Section 2.2) that works in the time-invariant set-

ting. At every round the selected point maximizes a function of the form μt−1(x)+
√
βtσt−1(x).

Given the previous samples (x1, . . . ,xt) and corresponding observations yt = [y1, . . . , yt], μt−1

and σt−1 of the time-invariant GP f(x) are given in (2.4). Intuitively, one seeks points with a

high mean to favor exploitation, but with a high standard deviation to favor exploration.
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In the time-invariant setting, GP-UCB is known to achieve sublinear regret under mild as-

sumptions (see Theorem 2.2.1). The problem with using it in our setting is that it treats all of

the samples as being equally important, whereas according to our model, the samples become

increasingly stale with time. In Section 5.2, we present our algorithms that account for this fact.

5.1.2 Related Work

In the time-invariant setting, a wide variety of works have made use of upper confidence bound

(UCB) algorithms, where the selected point maximizes a linear combination of the posterior mean

and standard deviation. In particular, Srivinas et al. [SKKS10] provided regret bounds for the GP-

UCB algorithm that we outline in Theorem 2.2.1, and several extensions were given subsequently,

including the contextual [KO11] and high-dimensional [DKC13, SSZA14, WZH+13] settings.

While the study of time-varying models is limited in the GP setting, several such models have

been considered in the multi-armed bandit (MAB) setting. Perhaps the most well-known one

is the adversarial setting [LR85, BCB12, BDKP15], where one typically seeks to compete with

the best fixed strategy. Rewards modeled by Markov chains have been considered under the

categories of restless bandits [Whi88, BNM00, OR12, SU08], where the reward for each arm

changes at each time step, and rested bandits [TL12, LLZ13], where only the pulled arm changes.

Two further related works are those of [SU08], who studied a MAB problem with varying

rewards based on Brownian motion, and Besbes et al.[BGZ14], who considered a general MAB

setting with time-varying rewards subject to a total budget in the amount of change allowed.

Both [SU08] and [BGZ14] demonstrate the need for a forgetting-remembering trade-off arising

from the fact that using the information from more samples may decrease the variance of the

function estimates, while older information may be stale and hence misleading. Both papers

present strategies in which the algorithm is reset at regular intervals in order to discard stale

data. This is shown to be optimal in the worst case for the function class considered in [BGZ14],

whereas in [SU08] it is shown that simple resetting strategies can be suboptimal in more specific

scenarios, and alternative approaches are presented.

In contrast to GP-based settings such as ours, the setups of [SU08] and [BGZ14] consider finite

action spaces, and assume independence between the rewards associated with different arms.

Thus, observing the reward of one arm does not reveal any information about the other ones, and

the algorithms are designed to exploit temporal correlations, but not spatial correlations.

5.1.3 Contributions

The main contributions of this chapter are:

• In Section 5.2, we introduce two algorithms for addressing the fundamental trade-offs

that are inherent in the problem formulation: (i) trading off exploration with exploitation;
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(ii) differentiating between stale and fresh data in the presence of time variations; (iii)

exploiting spatial and temporal correlations present in the reward function.

• Our main results present regret bounds (Section 5.3), first for general kernels and then

for the SE and Matérn kernels, that explicitly characterize the trade-off between the time

horizon and the rate at which the function varies. Their proofs require novel techniques to

handle difficulties arising from the time variations, such as the maximum function value

and its location changing drastically throughout the duration of the time horizon.

• In Section 5.3, we provide an algorithm-independent lower bound on the cumulative regret.

• We demonstrate the utility of our model and algorithms on both synthetic and real-world

data in Section 5.4.

5.2 Algorithms for Time-Varying Rewards

In this section, we present two algorithms that simultaneously balance between exploration and

exploitation as well as forgetting and remembering. We first introduce an algorithm R-GP-UCB

that takes a conceptually simple approach to handling the forgetting-remembering trade-off,

namely, running the GP-UCB algorithm within blocks of size N , and applying resetting at the

start of each block. Some insight on how to choose N is given by our bounds in the following

section. The pseudo-code is shown in Algorithm 8.

Algorithm 8 GP-UCB with Resetting (R-GP-UCB) [BSC16]

Input: Domain D, GP prior (μ0, σ0, k), block size N
1: for t = 1, 2... do
2: if t mod N = 1 then
3: Reset μt−1(x) = μ0(x) and σt−1(x) = σ0(x) for each x

4: Choose xt = argmaxx∈D μt−1(x) +
√
βtσt−1(x)

5: Sample yt = ft(xt) + zt
6: Perform Bayesian update as in (2.4), using only the samples {xt} and {yt} obtained

since the most recent reset, to obtain μt and σt

Our second algorithm, TV-GP-UCB, instead forgets in a “smooth” fashion, by using a posterior

update rule obtained via the time-varying model (5.1)–(5.2). In analogy with (2.4), the mean

and variance of ft given the previous samples (x1, . . . ,xt) and corresponding observations

yt = [y1, . . . , yt] are given by

μ̃t+1(x) := k̃t(x)
T
(
K̃t + σ2It

)−1
yt (5.3)

σ̃2
t+1(x,x

′) := k(x,x)− k̃t(x)
T
(
K̃t + σ2It

)−1
k̃t(x), (5.4)

where K̃t = Kt ◦ Dt with Dt =
[
(1− ε)|i−j|/2 ]T

i,j=1
, and k̃t(x) = kt(x) ◦ dt where

dt =
[
(1− ε)(T+1−i)/2 ]T

i=1
. Here ◦ is the Hadamard product, and Ik is the identity matrix.
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The derivation of (5.3)–(5.4) is given in Appendix 5.A. Using these updates, the TV-GP-UCB

algorithm is given in Algorithm 9. The idea is that the older a sample is, the smaller the value in

the corresponding entries of dt and Dt defined following (5.4), and hence the less it contributes

to the final values of μ̃t(x) and σ̃t(x). This algorithm can in fact be considered a special case of

contextual GP-UCB [KO11] with a spatio-temporal kernel, but our analysis (Section 5.3) goes

far beyond that of [KO11] in order to explicitly characterize the dependence on T and ε.

Algorithm 9 Time-Varying GP-UCB (TV-GP-UCB) [BSC16]

Input: Domain D, GP prior (μ̃0, σ̃0, k) and parameter ε
1: for t = 1, 2... do
2: Choose xt = argmaxx∈D μ̃t−1(x) +

√
βtσ̃t−1(x)

3: Sample yt = ft(xt) + zt
4: Perform Bayesian update as in (5.3)–(5.4) to obtain μ̃t and σ̃t

As it is presented above, TV-GP-UCB has an identical computational complexity to GP-UCB,

i.e. the complexity of the sequential Bayesian update is O(T 2) [ORR+08]. R-GP-UCB is less

complex, since the matrix operations are on matrices of size N rather than the overall time

horizon T . In practice, however, one could further modify TV-GP-UCB to improve the efficiency

by occasionally resetting and/or discarding stale data [ORR+08].

5.3 Time-varying Regret Bounds

In this section, we provide our main theoretical upper and lower bounds on the regret. We assume

throughout this section that hyperparameters are known, i.e. both spatial kernel hyperparameters

and ε; in the numerical section we will address real-world problems where these are unknown.

5.3.1 Preliminary Definitions and Results

Smoothness Assumptions: Each of our results below will assume that the kernel k is such that

a (strict) subset of the following statements hold for some (ai, bi) and all L ≥ 0:

P

[
sup
x∈D

∣∣f(x)∣∣ > L

]
≤ a0e

−(L/b0)2 (5.5)

P

[
sup
x∈D

∣∣∣ ∂f

∂x(j)

∣∣∣ > L

]
≤ a1e

−(L/b1)2 ,

j = 1, . . . , p (5.6)

P

[
sup
x∈D

∣∣∣ ∂2f

∂x(j1)∂x(j2)

∣∣∣ > L

]
≤ a2e

−(L/b2)2 ,

j1, j2 = 1, . . . , p, (5.7)

where f ∼ GP(0, k).
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Assumption (5.5) is mild, since f(x) is Gaussian and thus has exponential tails. Assumption

(5.6) was used in [SKKS10], and ensures that the behavior of the GP is not too erratic. It is

satisfied for SE, as well as the Matérn kernel with ν > 2 [SKKS10], though for other kernels

(e.g., Ornstein-Uhlenbeck) it can fail. Assumption (5.7) is used only for our lower bound; it is

again satisfied by the SE kernel, as well as the Matérn kernel with ν > 4.

Mutual Information: It was shown in Section 2.2.1 that a key quantity governing the regret

bounds of GP-UCB in the time-invariant setting is the mutual information

I(fT ;yT ) =
1

2
log det

(
IT + σ−2KT

)
, (5.8)

where

fT := (f(x1), . . . , f(xT ))

in the case of the time-invariant GP f . The corresponding maximum over any set of points

(x1, . . . ,xT ) is given by

γT := max
x1,...,xT

I(fT ;yT ). (5.9)

In our setting, the analogous quantities are as follows:

Ĩ(fT ;yT ) =
1

2
log det

(
IT + σ−2K̃T

)
, (5.10)

γ̃T := max
x1,...,xT

Ĩ(fT ;yT ), (5.11)

where

fT := fT (xT ) = (f1(x1), . . . , fT (xT )).

While these take the same form as (5.8)–(5.9), they can behave significantly differently when

ε > 0. The time-varying versions are typically much higher due to the fact fT represents the

points of T different random functions, as opposed to a single function at T different points.

Algorithm-Independent Lower Bound: The following result gives an asymptotic lower

bound for any bandit optimization algorithm under fairly mild assumptions, expressed in terms

of the time horizon T and parameter ε.

Theorem 5.3.1. Suppose that the kernel is such that f ∼ GP(0, k) is almost surely twice
continuously differentiable and satisfies (5.6)–(5.7) for some (a1, b1, a2, b2). Then, any GP
bandit optimization algorithm incurs expected regret E[RT ] = Ω(Tε).

The proof (in Appendix 5.C.4) reveals that this result holds true even in the full information2

(as opposed to bandit) setting, and is based on the fact that at each time step, there is a non-zero

probability that the maximum value and its location change by an amount proportional to ε. As

discussed above, this lower bound motivates the study of the joint dependence on the regret of T

and ε, and in particular, the highest possible constant α such that the regret behaves as O∗(Tεα).
2In the full information setting, we get to observe the entire function from the previous time step.
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5.3.2 General Upper Bounds

We now present our general bounds on the algorithms from Section 5.2 whose proofs can be

found in Appendix 5.C.1 and 5.C.2. The regret bounds are of a similar form, but we will shortly

apply these to specific kernels and find that the bounds for TV-GP-UCB yield better scaling laws.

General Bounds: The following theorems provide regret bounds for R-GP-UCB and TV-

GP-UCB, respectively. We will simplify them below to obtain scaling laws for specific kernels.

Theorem 5.3.2. Let the domain D ⊂ [0, r]p be compact and convex, and suppose that the kernel
is such that f ∼ GP(0, k) is almost surely continuously differentiable and satisfies (5.5)–(5.6)

for some (a0, b0, a1, b1). Fix δ ∈ (0, 1), and set

βT = 2 log
2π2T 2

3δ
+ 2p log

(
rpbT 2

√
log

2paπ2T 2

3δ

)
. (5.12)

Defining C1 = 8/ log(1 + σ−2), R-GP-UCB satisfies the following after T time steps:

RT ≤
√
C1TβT

(
T

N
+ 1

)
γN + 2 + TψT (N, ε) (5.13)

with probability at least 1− δ, where

ψT (N, ε) :=
√

βT
(
3σ−2 + σ−4

)
N3ε+

(
σ−2 + σ−4

)
N3ε(2 + b0)

√
log

2(1 + a0)π2T 2

3δ
.

(5.14)

The proof of Theorem 5.3.2 departs from regular time-invariant proofs such as [SKKS10] in

the sense that the posterior updates (2.4) assumed by the algorithm differ from the true posterior

described by (5.3)–(5.4), thus requiring a careful handling of the effect of the mismatch.

Theorem 5.3.3. Let the domain D ⊂ [0, r]p be compact and convex, and suppose that the kernel
is such that f ∼ GP(0, k) is almost surely continuously differentiable and satisfies (5.6) for some
(a1, b1). Fix δ ∈ (0, 1), and set

βT = 2 log
π2T 2

2δ
+ 2p log

(
rpbT 2

√
log

paπ2T 2

2δ

)
. (5.15)

Defining C1 = 8/ log(1 + σ−2), TV-GP-UCB satisfies the following after T time steps:

RT ≤
√
C1TβT γ̃T + 2 (5.16)

≤
√
C1TβT

(
T

Ñ
+ 1

)(
γÑ + Ñ3ε

)
+ 2 (5.17)

with probability at least 1− δ, where (5.17) holds for any Ñ ∈ {1, . . . , T}.
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The step in (5.16) is obtained using techniques similar to those of [SKKS10, KO11], whereas

the step in (5.17) is non-trivial and new. This step is key to our analysis, bounding the maximum

mutual information γ̃T for the time varying case in terms of the analogous quantity γÑ from

the time-invariant setting. The idea in doing this is to split the block {1, . . . , T} into smaller

blocks of size Ñ within which the overall variation in ft is not too large. This is in contrast

with R-GP-UCB (and [BGZ14]), where the algorithm takes the block length N as a parameter

and explicitly resets the algorithm every N time steps. For TV-GP-UCB, the length Ñ is only

introduced as a tool in the analysis.

Applications to Specific Kernels: Specializing the above results to the squared exponential

and Matérn kernels, using the corresponding bounds on γN from [SKKS10], and optimizing N

as a function of T and ε, we obtain the following.

Corollary 5.3.1. Under the conditions of Theorems 5.3.2 and 5.3.3, we have for any fixed p:

1. For the squared exponential kernel, RT = O∗(max{√T , T ε1/8}) for R-GP-UCB with
N = Θ(min{T, ε−1/4}), and RT = O∗(max{√T , T ε1/6}) for TV-GP-UCB.

2. Consider the Matérn kernel with parameter ν > 2, and set c = p(p+1)
2ν+p(p+1) ∈ (0, 1). We

have RT = O∗(max{
√
T 1+c, T ε

1
2

1−c
4−c }) for R-GP-UCB with N = Θ(min{T, ε− 1

4−c }),
and RT = O∗(max{

√
T 1+c, T ε

1
2

1−c
3−c }) for TV-GP-UCB.

The proof is given in Appendix 5.C.3. Note that, upon substituting ε = 0, the preceding O∗(·)
terms are dominated by the first terms in the maxima, and the bounds for both algorithms reduce

to those obtained by GP-UCB in Theorem 2.2.1. In the case that ε vanishes more slowly (e.g., as

1/
√
T ), the regret bounds for TV-GP-UCB are strictly better than those of R-GP-UCB. The

worsened bounds for the latter arise due to the above-mentioned mismatch in the update rules.

For both kernels, the optimized block length N of R-GP-UCB increases as ε decreases; this is

to be expected, as it means that older samples are more correlated with the present function. We

also observe that N increases as the function becomes smoother (by increasing ν for the Matérn

kernel, or by switching from Matérn to squared exponential).

5.4 Experimental Evaluation

In this section, we test our algorithms on both synthetic and real data, as well as studying the

effect of mismatch with respect to the algorithm parameters ε and N .

Practical considerations: While (5.12) and (5.15) give explicit choices for βt, these usually

tend to be too conservative in practice. For good empirical performance, we rely only on

the scaling βt = O(p log t) dictated by these choices, letting βt = c1 log(c2t) (similarly to

[SKKS10, KSP15], for example). We found c1 = 0.8 and c2 = 4 to be suitable for trading off

exploration and exploitation, and we therefore use these in all of our synthetic experiments.
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Our theoretical analysis assumed that we know the hyperparameters of both spatial and

temporal kernel. Having perfect knowledge of ε and other hyperparameters is typically not

realistic. The GP perspective allows us to select them in a principled way by maximizing the GP

marginal likelihood [RW06]. In our real-world experiments below, we select ε in such manner,

using the approach from [VVLGS12], outlined in Appendix 5.B. In our synthetic experiments,

we consider both the cases of perfect and imperfect knowledge of ε.

Baseline Comparisons: We are not aware of any algorithms other than those in Section

5.2 that exploit both spatial and temporal correlations. In both our synthetic and real-data

experiments, we found it crucial to handle both of these in order to obtain reasonable values for

the cumulative regret, thus drastically limiting the number of reasonable baselines. Nevertheless,

we also consider GP-UCB (which exploits spatial but not temporal correlations), and in the

real-world experiments, we consider a completely random selection (thus corresponding to a

choice that we should hope to beat significantly).
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Figure 5.2: Numerical performance of upper confidence bound algorithms on synthetic data.
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5.4.1 Synthetic Data

We consider a two-dimensional setting and quantize the decision space D = [0, 1]2 into the grid

of 50×50 equally-spaced points. We generate our data according to the time-varying model (5.2),

considering both the squared exponential and Matérn kernels. For the former we set l = 0.2, and

for the latter we set ν = 2.5 and l = 0.2. We set the sampling noise variance σ2 to 0.01, i.e., 1%

of the signal variance.

Matched Case: We first consider the case that the algorithm parameters are “matched”. Specif-

ically, the parameter ε for TV-GP-UCB is the true parameter for the model, and the parameter

N for R-GP-UCB is chosen in accordance with Corollary 5.3.1: N = �min
{
T, 12ε−1/4

}� for

the squared exponential kernel, and N = �min
{
T, 24ε−

1
4−c

}� for the Matérn kernel, where the

constants were found via cross-validation.

In Figures 5.2a and 5.2b, we show the average regret RT
T of TV-GP-UCB and R-GP-UCB for

ε ∈ {0.001, 0.01, 0.03}. For each time shown, we average the performance over 200 independent

trials. We observe that for all values of ε and for both kernel functions, TV-GP-UCB outperforms

R-GP-UCB, which is consistent with the theoretical bounds we obtained in the previous section.

Furthermore, we see that the curves for R-GP-UCB have an oscillatory behavior, resulting from

the fact that one tends to incur more regret just after a reset is done. In contrast, the curves for

TV-GP-UCB are more steady, since the algorithm forgets in a “smooth” fashion.

Mismatch and Robustness: We consider the stability of TV-GP-UCB when there is mismatch

between the true ε and the one used in TV-GP-UCB. We focus on the SE kernel, and we set

ε = 0.01 and T = 200. From Figure 5.2c, we see that the performance of TV-GP-UCB is robust

with respect to the mis-specification of ε. In particular, the increase in regret as ε is increasingly

over-estimated is slow. In contrast, while slightly under-estimating ε is not harmful, the regret

increases rapidly beyond a certain point. In particular, using 0 instead of the true ε corresponds

to simply running the standard GP-UCB algorithm, and gives the worst performance within the

range shown. Note that the shaded area corresponds to a standard deviation from the mean.

Next, we study R-GP-UCB on the same model to determine the robustness with respect to the

choice of N ; the results are shown in Figure 5.2d. Values of N that are too small are problematic,

since the algorithm resets too frequently. While the mean of the regret is robust with respect

to increasing N , we observe that the corresponding standard deviation also steadily increases.

GP-UCB is again recovered as a special case, corresponding to N = T .

5.4.2 Real Data

We use temperature data collected from 46 sensors deployed at Intel Research Berkeley. The

dataset contains 5 days of measurements collected at 10-minute intervals. The goal of the

spatiotemporal monitoring problem (see [KO11] for details) is to activate a sensor at every time

step that reports a high temperature. Hence, ft consists of the set of all sensor reportings at time t.
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Figure 5.3: Numerical performance of upper confidence bound algorithms on real data.

A single sensor is activated every 10 minutes., and the regret is measured as the temperature

difference between reporting of the activated sensor and the one that reports the maximum

temperature at that particular time. Fig. 5.3b plots each of the 46 functions with respect to time.

As a base comparison, we consider a method that simply picks the sensors uniformly at random.
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We also consider the standard GP-UCB algorithm (Algorithm 2), even though it is unsuitable

here since the reward function is varying with time.3 Although it is not shown, we note that the

RExp3 algorithm [BGZ14] (Exp3 with resetting) performed comparably to GP-UCB for this data

set, suffering from the fact that it does not exploit correlations between the sensors.

We use the first three days of measurements for learning our algorithms’ parameters. First, we

compute the empirical covariance matrix from these days and use it as the kernel matrix in all of

the algorithms. Next, using the same three training days, we obtain ε = 0.03 by maximizing the

marginal likelihood [VVLGS12], and we obtain N = 15 by cross-validation. The algorithms

are run on the final two days of the data. The results (c1 = 0.8, c2 = 0.4, σ2 = 0.5 or 5% of

the signal variance) are shown in Figure 5.3a. We observe that GP-UCB performs well for a

short time, but then starts to suffer from the stale data, eventually becoming barely better than

a random guess. Once again, TV-GP-UCB improves over R-GP-UCB, with the gap generally

increasing over the duration of the experiment.

Next, we use traffic speed data from 357 sensors deployed along the highway I-880 South

(California). The dataset contains one month of measurements, where 84 measurements were

made on every day in between 6 AM and 11 AM. Our goal is to identify the least congested

part of the highway by tracking the point of maximum speed. We use two thirds of the dataset

to compute the empirical covariance matrix (and set it as the kernel matrix), and to learn ε by

maximizing the marginal likelihood for all the training days [VVLGS12], treating each day as

being statistically independent. The last 10 days were used for testing. Due to the small time

horizon T = 84 in comparison to the number of sensors, we restrict the domain to contain 50

sensors, chosen randomly from the 357. Our results (ε = 0.04, σ2 = 5.0 or 5% of the signal

variance, T = 84, c1 = 0.2, c2 = 0.4) were averaged over 20 different initially activated sensors.

In Figure 5.3, in final two columns, we show the outcome of the experiment for 4 testing days.

TV-GP-UCB outperforms GP-UCB on most testing days, with the two being comparable for a

few of the days (e.g., see Figure 5.3f). The latter situation arises when the indices of the best

sensors do not change drastically over the time horizon, which is not always the case. In general,

both algorithms suffer a large regret when sensors that were reporting high speeds suddenly

change and start to report small speeds. However, TV-GP-UCB recovers more quickly from this

compared to GP-UCB, due to its forgetting mechanism.

Note that we have omitted R-GP-UCB from this experiment, since we found it to be unsuitable

due to the small time horizon. Moreover, this is the same reason that GP-UCB performs

reasonably, unlike the temperature sensor example. Essentially, GP-UCB suffers more with a

longer time horizon due to the larger amount of stale data.

3In [SKKS10], the same data was used to test GP-UCB in a different way; in each experiment, the function f(x)
was taken to be the set of temperatures at a single time.

91



Chapter 5. Gaussian Process Optimization with Time-Varying Reward Function

5.A TV Posterior Updates

Here we derive the posterior update rules for the time-varying setting via a suitable adaptation of

the derivation for the time-invariant setting [RW06]. Observe from (5.1)–(5.2) that each function

ft depends only on the functions gi for i ≤ t. By a simple recursion, we readily obtain for all t, j

and x that

Cov[ft(x), ft+j(x
′)] = (1− ε)j/2E[ft(x)ft(x

′)] = (1− ε)j/2k(x,x′). (5.18)

Hence, and since each output yt equals the corresponding function sample ft(xt) plus additive

Gaussian noise zt with variance σ2, the joint distribution between the previous outputs yt =

(y1, . . . , yt) (corresponding to the points (x1, . . . ,xt)) and the next function value ft+1(x) is[
y

ft+1(x)

]
∼ N

(
0,

[
K̃t + σ2It k̃t(x)

k̃t(x)
T k(x,x)

])
(5.19)

using the definitions in the proposition statement. Using the formula for the conditional distribu-

tion associated with a jointly Gaussian random vector [RW06, App. A], we find that ft+1(x) is

conditionally Gaussian with mean μ̃t(x) and variance σ̃t(x)
2, as was to be shown.

5.B Learning Time-Varying Parameter via Maximum-Likelihood

In this section, we provide an overview of how ε can be learned from training data in a principled

manner; the details can be found in [VVSLG12, Section 4.3] and [RW06, Section 5]. Throughout

this appendix, we assume that the kernel matrix is parametrized by a set of hyperparameters θ

(e.g., θ = (ν, l) for the Matérn kernel), σ and ε.

Let ȳ be a vector of observations such that the i-th entry is observed at time ti as a result of

sampling the function fti at location xi. Note that there will typically be many indices i sharing

common values of ti, since in the training data we often have multiple samples at each time.

Under our time-varying GP model, the marginal log-likelihood of ȳ given the hyperparameters is

log p(ȳ|θ, σ, ε) = −1

2
ȳT (K̄ ◦ D̄ + σ2I)−1ȳ − 1

2
log |K̄ ◦ D̄ + σ2I| − n

2
log(2π) (5.20)

where (K̄)ij = k(xi,xj) and (D̄)ij = (1− ε)|ti−tj |/2. To set the hyperparameters by maximiz-

ing the marginal likelihood, we can use the partial derivatives with respect to the hyperparameters:

∂ log p(ȳ|θ, σ, ε)
∂ε

=
1

2
tr
(
(ααT − (K̄ ◦ D̄ + σ2I)−1)(K̄ ◦ D̄′)

)
, (5.21)

where α = (K̄ ◦ D̄ + σ2I)−1ȳ, and (D̄
′
)ij = −v(1− ε)v−1 with v = |ti − tj |/2.

We can now fit ε and the other hyperparameters by optimizing the marginal likelihood on the

training data, e.g. by using an optimization algorithm from the family of quasi-Newton methods.
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5.C Proofs

5.C.1 Analysis of TV-GP-UCB (Theorem 5.3.3)

We recall the following alternative form for the mutual information (see (5.10)) from [SKKS10,

Lemma 5.3], which extends immediately to the time-varying setting:

Ĩ(fT ;yT ) =
1

2

T∑
t=1

log
(
1 + σ−2σ̃2

t−1(xt)
)
. (5.22)

Proof of 5.16

The initial steps of the proof follow similar ideas to [SKKS10], but with suitable modifications

to handle the fact that we have a different function ft at each time instant. A key difficulty is

in subsequently bounding the maximum mutual information in the presence of time variations,

which is done in the following subsection.

We first fix a discretization Dt ⊂ D ⊆ [0, r]p of size (τt)
p satisfying

‖x− [x]t‖1 ≤ rp/τt, ∀x ∈ D, (5.23)

where [x]t denotes the closest point in Dt to x. A uniformly-spaced grid suffices to ensure this.

We now fix a constant δ > 0 and an increasing sequence of positive constants {πt}∞t=1

satisfying
∑

t≥1 π
−1
t = 1 (e.g. πt = π2t2/6), and condition on three high-probability events:

1. First, if βt ≥ 2 log 3πt
δ then the selected points {xt}Tt=1 satisfy the confidence bounds

|ft(xt)− μ̃t−1(xt)| ≤ β
1/2
t σ̃t−1(xt), ∀t (5.24)

with probability at least 1 − δ
3 . To see this, we note that conditioned on the outputs

(y1, . . . , yt−1), the sampled points (x1, . . . ,xt) are deterministic, and

ft(xt) ∼ N (μ̃t−1(xt), σ̃
2
t−1(xt)).

An N (μ, σ2) random variable is within
√
βσ of μ with probability at least 1 − e−β/2, and

hence our choice of βt ensures that the event corresponding to time t in (5.24) occurs with

probability at least δ
3πt

. Taking the union bound over t establishes the claim.

2. By the same reasoning with an additional union bound over x ∈ Dt, if βt ≥ 2 log 3|Dt|πt

δ ,

|ft(x)− μ̃t−1(x)| ≤ β
1/2
t σ̃t−1(x), ∀t,x ∈ Dt (5.25)

holds with probability at least 1− δ
3 .
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3. Finally, we claim that setting Lt = b
√
log(3paπt/δ) yields

|ft(x)− ft(x
′)| ≤ Lt‖x− x′‖1, ∀t,x ∈ D,x′ ∈ D (5.26)

with probability at least 1 − δ
3 . To see this, we note that by the assumption in (5.6) and

the union bound over j = 1, . . . , p, the event corresponding to time t in (5.26) holds with

probability at least 1− pae−L2
t /b

2
= δ

3πt
. Taking the union bound over t establishes the claim.

Again applying the union bound, all three of (5.24)–(5.26) hold with probability at least 1− δ.

We henceforth condition on each of them occurring.

Combining (5.23) with (5.26) yields for all x that

|ft(x)− ft([x]t)| ≤ Ltrp/τt (5.27)

= b
√
log(3paπt/δ)rp/τt, (5.28)

and hence choosing τt = rpbt2
√
log(2paπt/δ) yields

|ft(x)− ft([x]t)| ≤ 1/t2. (5.29)

Note that this choice of τt yields |Dt| = (τt)
p = (rpbt2

√
log(3paπt/δ))

p. In order to satisfy

both lower bounds on βt stated before (5.24) and (5.25), it suffices to take higher of the two

(i.e., the second), yielding

βt = 2 log(3πt/δ) + 2p log(rpbt2
√
log(3paπt/δ)). (5.30)

This coincides with (5.15) upon setting πt = π2t2/6.

Substituting (5.29) into (5.25) and applying the triangle inequality, we find the maximizing

point x∗
t at time t satisfies

|ft(x∗
t )− μ̃t−1([x

∗
t ]t)| ≤ β

1/2
t σ̃t−1([x

∗
t ]t) + 1/t2. (5.31)

Thus, we can bound the instantaneous regret as follows:

rt = ft(x
∗
t )− ft(xt) (5.32)

≤ μ̃t−1([x
∗
t ]t) + β

1/2
t σ̃t−1([x

∗
t ]t) + 1/t2 − ft(xt) (5.33)

≤ μ̃t−1(xt) + β
1/2
t σ̃t−1(xt) + 1/t2 − ft(xt) (5.34)

≤ 2β
1/2
t σ̃t−1(xt) + 1/t2, (5.35)

where in (5.33) we used (5.31), (5.34) follows since the function μ̃t−1(x) + β
1/2
t σ̃t−1(x) is

maximized at xt by the definition of the algorithm, and (5.35) follows from (5.24).
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Finally, we bound the cumulative regret as

RT =

T∑
t=1

rt ≤
T∑
t=1

(
2β

1/2
t σ̃t−1(xt) + 1/t2

)
(5.36)

≤
√√√√T

T∑
t=1

4βtσ̃2
t−1(xt) + 2 (5.37)

≤
√
C1TβT γ̃T + 2, (5.38)

where (5.37) follows using
∑∞

t=1 1/t
2 = π2/6 ≤ 2 the fact that ‖z‖1 ≤

√
T‖z‖2 for any vector

z ∈ R
T . Equation (5.38) is proved using following steps from [SKKS10, Lemma 5.4], which we

include for completeness:

T∑
t=1

4βtσ̃
2
t−1(xt) ≤ 4βTσ

2
T∑
t=1

σ−2σ̃2
t−1(xt) (5.39)

≤ 4βTσ
2

T∑
t=1

C2 log
(
1 + σ−2σ̃2

t−1(xt)
)

(5.40)

≤ C1βT γ̃T , (5.41)

where (5.39) follows since βt is increasing in T , (5.40) holds with C2 = σ−2/ log(1 + σ−2)

using the identity z2 ≤ C2 log(1 + z2) for z2 ∈ [0, σ−2] (note also that the following holds

σ−2σ̃2
t−1(xt) ≤ σ−2k(xt,xt) ≤ σ−2), and (5.41) follows from the definitions of C1 and γ̃T ,

along with the alternative form for the mutual information in (5.22).

Proof of 5.17

It remains to show that

γ̃T ≤
(
T

Ñ
+ 1

)(
γÑ + Ñ3ε

)
(5.42)

under the definitions in (5.10)–(5.11). Recall that (x1, . . . ,xT ) are the points of interest and

fT = (f1(x1), . . . , fT (xT ))

are the corresponding function values, and yT = (y1, . . . , yT ) contains the corresponding noisy

observations with

yi = fi(xi) + zi.

At a high level, we bound the mutual information with time variations in terms of the corre-

sponding quantity for the time-invariant case [SKKS10] by splitting the time steps {1, . . . , T}
into T

Ñ
blocks of length Ñ , such that within each block the function fi does not vary significantly.

We assume for the time being that T/Ñ is an integer, and then handle the general case.
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Using the chain rule for mutual information and the fact that the noise sequence {zi} is

independent, we have [CT01, Lemma 7.9.2]

Ĩ(fT ;yT ) ≤
T/Ñ∑
i=1

Ĩ(f
(i)

Ñ
;y

(i)

Ñ
), (5.43)

where y
(i)

Ñ
= (yÑ(i−1)+1, . . . , yÑi) contains the measurements in the i-th block, and f

(i)

Ñ
is

defined analogously. Maximizing both sides over (x1, . . . ,xT ), we obtain

γ̃T ≤ T

Ñ
γ̃Ñ . (5.44)

We are left to bound γ̃Ñ . To this end, we write the relevant covariance matrix as

K̃Ñ = KÑ ◦DÑ = KÑ +AÑ , (5.45)

where

AÑ := KÑ ◦DÑ −KÑ (5.46)

= KÑ ◦ (DÑ − 1Ñ ) (5.47)

and 1Ñ is the Ñ × Ñ matrix of ones. Observe that the (i, j)-th entry of DÑ − 1Ñ has absolute

value 1− (1− ε)
|i−j|

2 , which is upper bounded for all ε ∈ [0, 1] by ε|i− j|.4 Hence, and using

the fact that each entry of KÑ lies in the range [0, 1], we obtain the following bound on the

Frobenius norm:

‖AÑ‖2F ≤
∑
i,j

(i− j)2ε2 (5.48)

=
1

6
Ñ2(Ñ2 − 1)ε2 (5.49)

≤ Ñ4ε2, (5.50)

where (5.49) is a standard double summation formula. We will use this inequality to bound γ̃N
via Mirsky’s theorem, which is given as follows.

Lemma 5.C.1. (Mirsky’s theorem [HJ12, Cor. 7.4.9.3]) For any matrices U Ñ and V Ñ , and any
unitarily invariant norm |||·|||, we have∣∣∣∣∣∣diag(λ1(U Ñ ), . . . , λÑ (U Ñ ))− diag(λ1(V Ñ ), . . . , λÑ (V Ñ ))

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣U Ñ − V Ñ

∣∣∣∣∣∣, (5.51)

where λi(·) is the i-th largest eigenvalue.

4For |i− j| ≥ 2, this follows since the function of interest is concave, passes through the origin, and has derivative
|i−j|

2
≤ |i− j| there. For k = 1, the statement follows by observing that equality holds for ε ∈ {0, 1}, and noting

that the function of interest is convex.
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5.C. Proofs

Using this lemma with U Ñ = KÑ + AÑ , V Ñ = KÑ , and |||·||| = ‖ · ‖F , and making

use of (5.50), we find that λi(KÑ + AÑ ) = λi(KÑ ) + Δi for some {Δi}Ñi=1 satisfying∑Ñ
i=1Δ

2
i ≤ Ñ4ε2. We thus have

γ̃Ñ =
Ñ∑
i=1

log
(
1 + λi(KÑ +AÑ )

)
(5.52)

=

Ñ∑
i=1

log
(
1 + λi(KÑ ) + Δi

)
(5.53)

≤ γÑ +
Ñ∑
i=1

log(1 + Δi) (5.54)

≤ γÑ + Ñ log(1 + Ñ2ε) (5.55)

≤ γÑ + Ñ3ε, (5.56)

where (5.54) follows from the inequality log(1+a+b) ≤ log(1+a)+log(1+b) for non-negative

a and b (and the definition in (5.8)), (5.55) follows since a simple analysis of the optimality

conditions of

maximize
Ñ∑
i=1

log(1 + Δi) subject to
Ñ∑
i=1

Δ2
i ≤ Ñ4ε2 (5.57)

reveals that the maximum is achieved when all of the Δi are equal to Ñ2ε, and (5.56) follows

from the inequality log(1 + a) ≤ a.

Recalling that we are considering the case that T/Ñ is an integer, we obtain (5.17) by combin-

ing (5.44) and (5.56). In the general case, we simply use the fact that γ̃T is increasing in T by

definition, hence leading to the addition of one in (5.17).
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5.C.2 Analysis of R-GP-UCB (Theorem 5.3.2)

Parts of the proof of Theorem 5.3.2 overlap with that of Theorem 5.3.3; we focus primarily on

the key differences. First, overloading the notation from the TV-GP-UCB analysis, we let μ̃t(x)

and σ̃t(x) be defined as in (5.3)–(5.4), but using only the samples since the previous reset in the
R-GP-UCB algorithm, and similarly for kt, k̃t, dt, and so on. Thus, for example, the dimension

of kt is at most the length N between resets, and the entries of Dt are no smaller than (1− ε)N/2.

Note that the time-invariant counterparts μt(x) and σt(x) (computed using k and K in place of

k̃ and K̃) are used in the algorithm, thus creating a mismatch that must be properly handled.

Recall the definitions of the discretization Dt (whose cardinality is again set to τpt for some

τt), the corresponding quantization function [x]t, and the constants πt. We now condition on four

(rather than three) high probability events:

• Setting βt = 2 log 4|Dt|πt

δ , the same arguments as those leading to (5.24)–(5.25) reveal

|ft(xt)− μ̃t−1(xt)| ≤ β
1/2
t σ̃t−1(xt) ∀t ≥ 1 (5.58)

|ft(x)− μ̃t−1(x)| ≤ β
1/2
t σ̃t−1(x) ∀t ≥ 1,x ∈ Dt (5.59)

with probability at least 1− δ
2 . Note that in proving these claims we only condition on

the observations since the last reset, rather than all of the points since t = 1.

• Using the same argument as (5.26), the assumption in (5.6) implies that

∣∣∣∂ft(x)
∂x(j)

∣∣∣ ≤ Lt := b1

√
log

4da1πt
δ

∀t ≥ 1,x ∈ D, j ∈ {1, . . . , d} (5.60)

with probability at least 1− δ
4 .

• We claim that the assumption in (5.5) similarly implies that

∣∣yt∣∣ ≤ L̃t := (2 + b0)

√
log

4(1 + a0)πt
δ

∀t ≥ 1,x ∈ D (5.61)

with probability at least 1 − δ
4 . To see this, we first note that P

[|zt| ≤ L
] ≤ e−L2/2

since zt ∼ N (0, 1), and by a standard bound on the standard normal tail probability.

Combining this with (5.5) and noting that |yt| ≤ |ft(xt)| + |zt|, we find that the

probability P
[|yt| > 2L

]
is upper bounded by e−L2/2 + a0e

−(L/b0)2 , which in turn is

upper bounded by (1 + a0)e
−(L/(2+b0))2 . Choosing L = L̃t/2 and applying the union

bound, we obtain (5.61).

By the union bound, all four of (5.58)–(5.61) hold with probability at least 1− δ.

As in the TV-GP-UCB proof, we set τt = rpt2Lt, thus ensuring that |ft(x)− ft([x]t)| ≤ 1
t2

for all x ∈ D.
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5.C. Proofs

Defining

Δ
(μ)
t := sup

x∈D
|μ̃t(x)− μt(x)| (5.62)

Δ
(σ)
t := sup

x∈D
|σ̃t(x)− σt(x)| (5.63)

to be the maximal errors between the true and the mismatched posterior updates, we have:

rt = ft(x
∗
t )− ft(xt) (5.64)

≤ ft([x
∗
t ]t)− ft(xt) +

1

t2
(5.65)

≤ μ̃t−1([x
∗
t ]t) + β

1/2
t σ̃t−1([x

∗
t ]t)− μ̃t−1(xt) + β

1/2
t σ̃t−1(xt) +

1

t2
(5.66)

≤ μt−1([x
∗
t ]t) + β

1/2
t σt−1([x

∗
t ]t)− μt−1(xt) + β

1/2
t σt−1(xt) + 2Δ

(μ)
t + 2β

1/2
t Δ

(σ)
t +

1

t2

(5.67)

≤ 2β
1/2
t σt−1(xt) + 2Δ

(μ)
t + 2β

1/2
t Δ

(σ)
t +

1

t2
, (5.68)

where (5.65) follows in the same way as (5.33), (5.66) follows from (5.58)–(5.59), (5.67) follows

from the definitions in (5.62)–(5.63), and (5.68) follows from the choice of xt in the algorithm.

The key remaining step is to characterize Δ
(μ)
t and Δ

(σ)
t . Our findings are summarized in the

following lemma.

Lemma 5.C.2. Conditioned on the event in (5.61), we have Δ
(μ)
t ≤ (

σ−2 + σ−4
)
N3εL̃t and

Δ
(σ)
t ≤ (

3σ−2 + σ−4
)
N3ε almost surely.

This lemma implies Theorem 5.3.2 upon substitution into (5.68), setting πt = π2t2/6, and

following the steps from (5.36) onwards. In the remainder of the section, we prove the lemma.

The claims on Δ
(μ)
t and Δ

(σ)
t are proved similarly; we focus primarily on the latter since it is the

(slightly) more difficult of the two.

The subsequent analysis applies for arbitrary values of t and x, so we use the shorthands

k := kt(x), K := Kt(x), k̃ := k̃t(x), K̃ := K̃t and I := It. We first use the definition in

(5.4) and the triangle inequality to write

|σ̃t(x)2 − σt(x)
2|

=
∣∣k̃T

(K̃ + σ2I)−1k̃ − kT (K + σ2I)−1k
∣∣ (5.69)

≤ ∣∣k̃T
(K̃ + σ2I)−1k̃ − k̃

T
(K + σ2I)−1k̃

∣∣+ ∣∣k̃T
(K + σ2I)−1k̃ − kT (K + σ2I)−1k

∣∣
(5.70)

:= T1 + T2. (5.71)

We proceed by bounding T1 and T2 separately, starting with the latter.
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Set M := (K+σ2I)−1 for brevity. By expanding the quadratic function (k̃−k)TM(k̃−k)T ,

grouping the terms appearing in T2, and applying the triangle inequality, we obtain

T2 ≤ 2|kTM(k̃ − k)|+ |(k̃ − k)TM(k̃ − k)|. (5.72)

We upper bound each of these terms of the form aTMb by ‖a‖2‖M‖2→2‖b‖2, where ‖M‖2→2

is the spectral norm. By definition, λ is an eigenvalue of K if and only if 1
λ+σ2 is an eigenvalue

of M ; since K is positive semi-definite, it follows that ‖M‖2→2 ≤ 1
σ2 . We also have ‖k‖22 ≤ N

since the entries of k lies in [0, 1], and ‖k̃ − k‖22 ≤ N3ε2 since the absolute values of the entries

of k̃ − k are upper bounded by Nε by the argument following (5.47). Combining these, we

obtain

T2 ≤ 2σ−2N2ε+ σ−2N3ε2. (5.73)

To bound T1, we use the following inequality for positive definite matrices U ,V and any

unitarily invariant norm |||·||| [Bha97, Lemma X.1.4]:∣∣∣∣∣∣(U + I)−1 − (U + V + I)−1
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣I − (V + I)−1

∣∣∣∣∣∣. (5.74)

Specializing to the spectral norm, multiplying through by 1
σ2 , and choosing U = 1

σ2K and

V = 1
σ2 (K̃ −K), we obtain∥∥(K + σ2I)−1 − (K̃ + σ2I)−1

∥∥
2→2

≤ ∥∥σ−2I − (K̃ −K + σ2I)−1
∥∥
2→2

. (5.75)

Next, λ is an eigenvalue of the matrix K̃ −K if and only if σ−2 − 1
λ+σ2 is an eigenvalue of

σ−2I − (K̃ − K + σ2I)−1. Writing σ−2 − 1
λ+σ2 = σ−2

(
1 − 1

λ/σ2+1

) ≤ σ−4λ, it follows

that the right-hand side of (5.75) is upper bounded by σ−4‖K̃ −K‖2→2. Using (5.50) (observe

that AN = K̃ − K) and the fact that the spectral norm is upper bounded by the Frobenius

norm, we obtain ‖K̃ −K‖2→2 ≤ N2ε. Substituting into (5.75), we conclude that the matrix

M ′ := (K + σ2I)−1 − (K̃ + σ2I)−1 has a spectral norm which is upper bounded by σ−4N2ε.

Finally, T1 can be written as k̃
T
M ′k̃, and since ‖k̃‖22 ≤ N (since each entry of k̃ lies in [0, 1]),

we obtain

T1 ≤ σ−4N3ε. (5.76)

Combining (5.73) and (5.76) and crudely writing N2ε ≤ N3ε and N3ε2 ≤ N3ε, we obtain

|σ̃t(x)2 − σt(x)
2| ≤ (

3σ−2 + σ−4
)
N3ε, (5.77)

and hence, applying the inequality (a− b)2 ≤ |a2 − b2|, we obtain

Δ
(σ)
t ≤

√(
3σ−2 + σ−4

)
N3ε. (5.78)
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To characterize Δ
(μ)
t , we write the following analog of (5.70):

|μ̃t(x)
2 − μt(x)

2|
≤ ∣∣k̃T

(K̃ + σ2I)−1y − k̃
T
(K + σ2I)−1y

∣∣+ ∣∣k̃T
(K + σ2I)−1y − kT (K + σ2I)−1y

∣∣
(5.79)

:= T1 + T2. (5.80)

Following the same arguments as those above, and noting from (5.61) that ‖y‖22 ≤ NL̃2
N , we

obtain

T1 ≤ σ−2N2εL̃N (5.81)

T2 ≤ σ−4N3εL̃N , (5.82)

and hence

Δ
(μ)
t ≤ (

σ−2 + σ−4
)
N3εL̃N . (5.83)

5.C.3 Applications to Specific Kernels (Corollary 5.3.1)

In this section, we let IT (z) denote the integer in {1, . . . , T} which is closest to z ∈ R. We focus

primarily on the proof for TV-GP-UCB, since the proof for R-GP-UCB is essentially identical.

We begin with the squared exponential kernel. From (2.11), we have that the maximum mutual

information γÑ = O(p log Ñ) = O∗(1), and we thus obtain(
T

Ñ
+ 1

)(
γÑ +N3ε

)
= O∗

(( T

Ñ
+ 1

)
(1 + Ñ3ε)

)
. (5.84)

Setting Ñ = IT (ε−1/3), we find that this behaves as O∗(Tε1/3) when ε ≥ 1
T 3 , and as O∗(1)

when ε < 1
T 3 (and hence Ñ = T ). Substitution into Theorem 5.3.3 yields the desired result.

For the Matérn kernel, we have from (2.12) that γÑ = O(Ñ c log Ñ) = O∗(Ñ c) where

c = p(p+1)
2ν+p(p+1) , and we thus obtain(

T

Ñ
+ 1

)(
γÑ + Ñ3ε

)
= O∗

(( T

Ñ
+ 1

)
(Ñ c + Ñ3ε)

)
. (5.85)

Setting Ñ = IT (ε−
1

3−c ), we find that this behaves as O∗(Tε
1−c
3−c ) when ε ≥ 1

T 3−c , and as O∗(T c)

when ε < 1
T 3−c (and hence Ñ = T ). Substitution into Theorem 5.3.3 yields the desired result.

For R-GP-UCB, the arguments are analogous using Theorem 5.3.2 in place of Theorem 5.3.3,

with N playing the role of Ñ . We set N = IT (ε−1/4) for the squared exponential kernel and

N = IT (ε−
1

4−c ) for the Matérn kernel.
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5.C.4 Lower Bound (Theorem 5.3.1)

We obtain a lower bound on the regret of any algorithm by considering the optimal algorithm

for a genie-aided setting. Specifically, suppose that at time t, the entire function ft−1 is known

perfectly. We claim that the optimal strategy, in the sense of minimizing the expected regret,

is to choose xt to be any maximizer of ft−1. This can be seen by noting that minimizing the

regret rt = ft(x
∗
t )− ft(xt) is equivalent to maximizing the function value ft(xt), since ft(x

∗
t )

is unaffected by the choice of xt. Then, conditioned on the entire function ft−1, the next value

ft(x) is distributed as N (
√
1− εft−1(x), ε), and clearly the optimal strategy is to choose the

point that maximizes the mean. We proceed by lower bounding the regret incurred by such a

scheme. Recall that for each t, both ft and gt are distributed as GP(0, k). Thus, (5.6) and (5.7)

hold for all such functions.

We let ∇f denote the gradient vector of a function f , and let ∇2f denote the Hessian matrix.

For the time being, we condition on the previous function ft−1, the selected point xt (i.e., the

maximizer of ft−1) and the innovation function gt satisfying the following events for some

positive constants L and η:

A1 :=

{∣∣∣ ∂2ft−1(x)

∂x(j1)∂x(j2)

∣∣∣ ≤ L, ∀j1, j2,x
}

(5.86)

A2 :=

{∣∣∣ ∂2gt(x)

∂x(j1)∂x(j2)

∣∣∣ ≤ L, ∀j1, j2,x
}

(5.87)

A3 :=

{√
ε
∣∣∂gt(x)
∂x(j)

∣∣
2L

√
p

≤ η, ∀j
}

(5.88)

A4 :=
{
d(xt, B) ≥ η

}
, (5.89)

where d(xt, B) := minx∈B ‖xt − x‖2 is the distance of xt to the closest point on the boundary

B of the compact domain D. Observe that for any fixed η, P[Ai] can be made arbitrarily close

to one for i = 1, 2, 3 by choosing L sufficiently large. Moreover, we have P[A4] > 0 for

sufficiently small η, since otherwise the maximum of f ∼ GP(0, k) would be on the boundary

of the domain D with probability one. Applying the union bound, we conclude that the event

A := A1 ∩ A2 ∩ A3 ∩ A4 occurs with strictly positive probability for suitable chosen η and L.

We fix an arbitrary vector v with ‖v‖2 = 1 and a constant δ > 0, and note that the regret rt at

time t an be lower bounded as follows provided that xt + vδ ∈ D:

rt = max
x

ft(x)− ft(xt) (5.90)

≥ ft(xt + vδ)− ft(xt) (5.91)

=
√
1− ε

(
ft−1(xt + vδ)− ft−1(xt)

)
+

√
ε
(
gt(xt + vδ)− gt(xt)

)
(5.92)

=
√
1− ε

1

2
δ2vT

[∇2ft−1(xt + vδf )
]
v +

√
ε
(
δvT∇gt(xt) +

1

2
δ2vT

[∇2gt(xt + vδg)
]
v
)
.

(5.93)
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Eq. (5.92) follows by substituting the update equations in (5.1)–(5.2), and (5.93) holds for some

δf ∈ [0, δ] and δg ∈ [0, δ] by a second-order Taylor expansion; note that ∇ft−1(xt) = 0 since

xt maximizes ft−1, whose peak is away from the boundary of the domain by (5.89).

We choose the unit vector v to have the same direction as the gradient vector ∇gt(xt), so

that δvT∇gt(xt) = δ‖∇gt(xt)‖2. By (5.86)–(5.87), the entries of ∇2ft−1(xt + vδf ) and

∇2gt(xt + vδg) are upper bounded by L, and thus a standard inequality between the entry-wise

�∞ norm and the spectral norm reveals that the latter is upper bounded by Lp. This, in turn,

implies that vT
[∇2ft−1(xt + vδf )

]
v and vT

[∇2gt(xt + vδg)
]
v are upper bounded by Lp, and

hence we have the following

rt ≥
√
εδ‖∇gt(xt)‖2 − 1

2
Lpδ2

(√
1 + ε+

√
ε
)

(5.94)

≥ √
εδ‖∇gt(xt)‖2 − Lpδ2, (5.95)

where we have used
√
1 + ε+

√
ε ≤ 2. By differentiating with respect to δ, it is easily verified

that the right-hand side is maximized by δ =
√
ε‖∇gt(xt)‖2

2Lp . This choice is seen to be valid

(i.e., it yields xt + vδ still in the domain) by (5.88)–(5.89) and the fact that ‖z‖2 ≤ √
p‖z‖∞

for z ∈ R
p, and we obtain

rt ≥ ε‖∇gt(xt)‖22
4Lp

. (5.96)

It follows that the expectation of rt is lower bounded by

E[rt] ≥ P[A]E[rt|A] (5.97)

≥ P[A]
εE

[‖∇gt(xt)‖22 | A
]

4Lp
(5.98)

= Θ(ε), (5.99)

where (5.97) follows since rt ≥ 0 almost surely, and (5.99) follows since E
[‖∇gt(xt)‖22 | A

]
> 0

by a simple proof by contradiction: The expectation can only equal zero if its (non-negative)

argument is zero almost surely, but if that were the case then the unconditional distribution of

‖∇gt(xt)‖22 would satisfy P[‖∇gt(xt)‖22 = 0] > P[A], which is impossible since the entries of

∇gt(xt) are Gaussian [RW06, Sec. 9.4] and hence have zero probability of being exactly zero.

Finally, using (5.99), the average cumulative regret satisfies E[RT ] =
∑T

i=1 E[rT ] = Ω(Tε).
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6 Robust Submodular Maximization in
the Presence of Adversarial Removals

In this chapter, we consider another robust problem formulation in which our goal is to choose

a set of decisions to maximize some objective of interest, in the case that some of the selected

decisions might result in failure. Formally, we study the problem of maximizing a monotone

submodular function subject to a cardinality constraint k, with the added twist that a number of

items τ from the returned set may be removed. We focus on the worst-case setting considered

in [OSU16], in which a constant-factor approximation guarantee was given for τ = o(
√
k). We

solve a key open problem raised therein, presenting a new Partitioned Robust (PRO) submodular

maximization algorithm that achieves the same guarantee for more general τ = o(k).

This chapter is based on the joint work with Slobodan Mitrovic, Jonathan Scarlett and Volkan

Cevher [BMSC17b].

6.1 Introduction

Discrete optimization problems arise frequently in machine learning, and are often NP-hard even

to approximate. In the case of a set function exhibiting submodularity, one can efficiently perform

maximization subject to cardinality constraints with a
(
1− 1

e

)
-factor approximation guarantee.

Applications include influence maximization [KKT03], document summarization [LB11], sensor

placement [KG07], and active learning [KG12], just to name a few.

In many applications, one requires robustness in the decision (i.e., solution set) returned by the

algorithm, in the sense that the objective value degrades as little as possible when some elements

of the set are removed. For instance, (i) when deciding to run expensive experiments to learn

about a quantity of interest, some number of the selected experiments might fail; (ii) in influence

maximization problems, a subset of the chosen users may decide not to spread the word about

a product; (ii) in summarization problems, a user may choose to remove some items from the

summary due to their personal preferences; (iii) in the problem of sensor placement for outbreak

detection, some of the sensors might fail. In situations where one does not have a reasonable prior

distribution on the elements removed, protecting against worst-case removals becomes important.
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Algorithm Max. Robust. Cardinality Oracle Evals. Approx.

SATURATE[KMGG08] Arbitrary k +Θ(k log(k)) exponential in τ 1.0

OSU [OSU16] o(
√
k) k O(nk) 0.387

PRO-GREEDY o(k) k O(nk) 0.387

Table 6.1: Algorithms for robust monotone submodular optimization with a cardinality constraint.

Our algorithm PRO-GREEDY is efficient and allows for greater robustness.

This setting results in the robust submodular function maximization problem, in which we seek

to return a set of cardinality k that is robust with respect to the worst-case removal of τ elements.

6.1.1 Problem Statement

In this chapter, we study the robust problem formulation introduced in Section 2.3. Here, we

recall this problem and its main ingredients.

Let V be a ground set with cardinality |V | = n, and let f : 2V → R+ be a monotone

submodular set function defined on V . The function f is said to be submodular if for any sets

S ⊆ P ⊆ V and any element e ∈ V \ Y , it holds that

f(S ∪ {e})− f(S) ≥ f(P ∪ {e})− f(P ),

and is monotone if for any sets S ⊆ P ⊆ V we have f(S) ≤ f(P ). First, we recall the problem

of maximizing a monotone submodular function subject to a cardinality constraint (Section 2.3):

max
S⊆V,|S|≤k

f(S). (2.18)

A celebrated result of [NWF78] shows that a simple greedy algorithm that starts with an empty set

and then iteratively adds elements with highest marginal gain provides a (1−1/e)-approximation.

In this chapter, we consider the following robust version1 of the previous problem:

max
S⊆V,|S|≤k

min
E⊆S,|E|≤τ

f(S \ E)

We refer to τ as the robustness parameter, representing the size of the subset E that is removed

from the selected set S. Our goal is to find a set S such that it is robust upon the worst possible

removal of τ elements, i.e., after the removal, the objective value should remain as large as

possible. More information on the previous and related work can be found in Section 2.3.

1For τ = 0, the robust problem reduces to the one in (2.18).
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6.1. Introduction

6.1.2 Contributions

The main contributions of this chapter are:

• In this chapter, we solve a key open problem posed in [OSU16], namely, whether a

constant-factor approximation guarantee is possible for general τ = o(k), as opposed to

only τ = o(
√
k). We answer this question in the affirmative, providing a new Partitioned

Robust (PRO) submodular maximization algorithm (in Section 6.2.1) that attains a constant-

factor approximation guarantee; see Table 6.1 for comparison of different algorithms for

robust monotone submodular optimization with a cardinality constraint. More details on

these algorithms can be found in Section 2.3.

• Achieving this result requires novelty both in the algorithm and its analysis: While our

algorithm bears some similarity to that of [OSU16] (Fig. 2.4), it uses a new structure in

which the constructed set is arranged into partitions consisting of buckets whose sizes

increase exponentially with the partition index. As shown in Section 6.2.4, a key step in

our analysis provides a recursive relationship between the objective values attained by

buckets appearing in adjacent partitions.

• In addition to the above contributions, in Section 6.3 we provide the first empirical study

beyond what is demonstrated for τ = 1 in [KMGG08]. We demonstrate several scenarios

in which our algorithm outperforms both the GREEDY algorithm and the algorithm of

[OSU16].

6.1.3 Applications

In this section, we provide several examples of applications where the robustness of the solution

is favorable. The objective functions in these applications are non-negative, monotone and

submodular, and are used in our numerical experiments in Section 6.3.

Robust influence maximization. The goal in the influence maximization problem is to find

a set of k nodes (i.e., a targeted set) in a network that maximizes some measure of influence.

For example, this problem appears in viral marketing, where companies wish to spread the word

of a new product by targeting the most influential individuals in a social network. Due to poor

incentives or dissatisfaction with the product, for instance, some of the users from the targeted

set might make the decision not to spread the word about the product.

For many of the existing diffusion models used in the literature (e.g., see [KKT03]), given the

targeted set S, the expected number of influenced nodes at the end of the diffusion process is a

monotone and submodular function of S [HK16]. For simplicity, we consider a basic model in

which all of the neighbors of the users in S become influenced, as well as those in S itself.

More formally, we are given a graph G = (V,E), where V stands for nodes and E are the

edges. For a set S, let N (S) denote all of its neighboring nodes, and let RS ⊆ S represent the
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users that decide not to spread the word. The goal is to solve the robust dominating set problem,

i.e., to find a set of nodes S of size k that maximizes

min
|RS |≤τ,RS⊆S

|(S \RS) ∪N (S \RS)|. (6.1)

Robust personalized image summarization. In the personalized image summarization prob-

lem, a user has a collection of images, and the goal is to find k images that are representative of

the collection. After being presented with a solution, the user might decide to remove a certain

number of images from the representative set due to various reasons (e.g., bad lighting, motion

blur, etc.). Hence, our goal is to find a set of images that remain good representatives of the

collection even after the removal of some number of them.

One popular way of finding a representative set in a massive dataset is via exemplar based

clustering, i.e., by minimizing the sum of pairwise dissimilarities between the exemplars S and

the elements of the data set V . This problem can be posed as a submodular maximization problem

subject to a cardinality constraint; cf., [LBZK16].

Here, we are interested in solving the robust summarization problem, i.e., we want to find a set

of images S of size k that maximizes

min
|RS |≤τ,RS⊆S

f({e0})− f((S \RS) ∪ {e0}), (6.2)

where e0 is a reference element and

f(S) =
1

|V |
∑
v∈V

min
s∈S

d(s, v)

is the k-medoid loss, and where d(s, v) measures the dissimilarity between images s and v.

Further potential applications not covered here include robust sensor placement [KMGG08],

robust protection of networks [Bog12], robust feature selection [GR06] and robust batch Bayesian

Optimization [DKB14], some of which we will consider in the subsequent chapters.

6.2 Algorithm and its Guarantees

6.2.1 The Algorithm

Our algorithm, which we call the Partitioned Robust (PRO) submodular maximization algorithm,

is presented in Algorithm 10. As the input, we require a non-negative monotone submodular

function f : 2V → R+, the ground set of elements V , and an optimization subroutine A. The

subroutine A(k′, V ′) takes a cardinality constraint k′ and a ground set of elements V ′. Below,

we describe the properties of A that are used to obtain approximation guarantees.
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The output of the algorithm is a set S ⊆ V of size k that is robust against the worst-case

removal of τ elements. The returned set consists of two sets S0 and S1 (Figure 6.1). S1 is

obtained by running the subroutine A on V \S0 (i.e., ignoring S0), and is of size k−|S0|. Hence,

the set S1 to which we refer as the non-robust part of the solution is near-optimal on V \ S0.

Algorithm 10 Partitioned Robust Submodular optimization algorithm (PRO) [BMSC17b]

Input: Set V , k, τ , η ∈ N+, algorithm A
Output: Set S ⊆ V such that |S| ≤ k

1: S0, S1 ← ∅
2: for i ← 0 to �log τ� do
3: for j ← 1 to �τ/2i� do
4: Bj ← A (2iη, (V \ S0))
5: S0 ← S0 ∪Bj

6: S1 ← A (k − |S0|, (V \ S0))
7: S ← S0 ∪ S1

8: return S

We refer to the set S0 as the robust part of the solution set S. It consists of �log τ�+1 partitions,

where every partition i ∈ {0, · · · , �log τ�} consists of �τ/2i� buckets Bj , j ∈ {1, · · · , �τ/2i�}.

In partition i, every bucket contains 2iη elements, where η ∈ N+ is a parameter that is arbitrary

for now; we use η = log2 k in our asymptotic theory, but our numerical studies indicate that even

η = 1 works well in practice. Each bucket Bj is created afresh by using the subroutine A on

V \S0,prev, where S0,prev contains all elements belonging to the previous buckets. The following

proposition bounds the cardinality of S0, and is proved in Appendix 6.A.1.

Proposition 6.2.1. Fix k ≥ τ and η ∈ N+. The size of the robust part S0 constructed in
Algorithm 10 is |S0| =

∑�log τ�
i=0 �τ/2i�2iη ≤ 3ητ(log k + 2).

This proposition reveals that the feasible values of τ (i.e., those with |S0| ≤ k) can be as high

as O
(

k
ητ

)
. We will later set η = O(log2 k), thus permitting all τ = o(k) up to a few logarithmic

factors. In contrast, we recall that the algorithm OSU proposed in [OSU16] adopts a simpler

approach where a robust set is used consisting of τ buckets of equal size τ log k (Figure 2.4),

thereby only permitting the scaling τ = o(
√
k).

We provide the following intuition as to why PRO succeeds despite having a smaller size for S0

compared to the algorithm given in [OSU16]. First, by the design of the partitions, there always

exists a bucket in partition i that at most 2i items are removed from. The bulk of our analysis

is devoted to showing that the union of these buckets yields a sufficiently high objective value.

While the earlier buckets have a smaller size, they also have a higher objective value per item

due to diminishing returns, and our analysis quantifies and balances this trade-off. Similarly, our

analysis quantifies the trade-off between how much the adversary can remove from the (typically

large) set S1 and the robust part S0.
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Figure 6.1: Illustration of the set S = S0 ∪ S1 returned by PRO. The size of |S1| is k − |S0|,
and the size of |S0| is given in Prop 6.2.1. Every partition in S0 contains the same number of

elements (up to rounding).

6.2.2 Subroutine and Assumptions

PRO accepts a subroutine A as the input. We consider a class of algorithms that satisfy the

β-iterative property, defined below. We assume that the algorithm outputs the final set in some

specific order (v1, . . . , vk), and we refer to vi as the i-th output element.

Definition 6.2.1. Consider a normalized monotone submodular set function f on a ground set
V , and an algorithm A. Given any set T ⊆ V and size k, suppose that A outputs an ordered
set (v1, . . . , vk) when applied to T , and define Ai(T ) = {v1, . . . , vi} for i ≤ k. We say that A
satisfies the β-iterative property if

f(Ai+1(T ))− f(Ai(T )) ≥ 1

β
max
v∈T

f(v|Ai(T )). (6.3)

We recall that the notation f(v|Ai(T )) stands for f(Ai(T ) ∪ {v}) − f(Ai(T )). Intuitively,

(6.3) states that in every iteration, the algorithm adds an element whose marginal gain is at least a

1/β fraction of the maximum marginal. This necessarily requires that β ≥ 1.

Examples. Besides the classic greedy algorithm, which satisfies (6.3) with β = 1, a good candi-

date for our subroutine is THRESHOLDING-GREEDY [BV14], which satisfies the β-iterative prop-
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erty with β = 1/(1− ε). This decreases the number of function evaluations to O(n/ε log n/ε).

The STOCHASTIC-GREEDY [MBK+15] algorithm is another potential subroutine candidate

that can be used. While it is unclear whether this algorithm satisfies the β-iterative property,

it requires an even smaller number of function evaluations, namely, it requires O(n log 1/ε).

We will see in Section 6.3 that PRO performs well empirically when used with this subrou-

tine. We henceforth refer to PRO used along with its appropriate subroutine as PRO-GREEDY,

PRO-THRESHOLDING-GREEDY, etc.

Properties. Throughout the chapter, we use OPT(k, V ) to denote the following optimal set

of size k in the case of non-robust submodular maximization:

OPT(k, V ) ∈ argmax
S⊆V,|S|=k

f(S).

The following lemma generalizes a classical property of the greedy algorithm [NWF78, KG12]

(provided in Section 2.3) to the class of algorithms satisfying the β-iterative property.

Lemma 6.2.1. Consider a normalized monotone submodular function f : 2V → R+ and an
algorithm A(T ), T ⊆ V , that satisfies the β-iterative property in (6.3). Let Al(T ) denote the set
returned by the algorithm A(T ) after l iterations. Then for all k, l ∈ N+

f(Al(T )) ≥
(
1− e

− l
βk

)
f(OPT(k, T )). (6.4)

We will also make use of the following property, which is implied by the β-iterative property.

Proposition 6.2.2. Consider a submodular set function f : 2V → R+ and an algorithm A that
satisfies the β-iterative property for some β ≥ 1. Then, for any T ⊆ V and element e ∈ V \A(T )

we have that

f(e|A(T )) ≤ β
f(A(T ))

k
. (6.5)

Intuitively, (6.5) states that the marginal gain of any non-selected element cannot be more

than β times the average objective value of the selected elements. Proofs of Lemma 6.2.1 and

Proposition 6.2.2 can be found in Appendix 6.A.3 and 6.A.2, respectively.

6.2.3 Main Result: Approximation Guarantee

For the robust maximization problem, we let OPT(k, V, τ) denote the optimal set:

OPT(k, V, τ) ∈ argmax
S⊆V,|S|=k

min
E⊆S,|E|≤τ

f(S \ E).
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Moreover, for a set S, we let E∗
S denote the minimizer

E∗
S ∈ argmin

E⊆S,|E|≤τ
f(S \ E). (6.6)

With these definitions in place, the main theoretical result of this chapter is as follows.

Theorem 6.2.1. Let f be a normalized monotone submodular function, and let A be a subroutine
satisfying the β-iterative property. For a given budget k and parameters 2 ≤ τ ≤ k

3η(log k+2) and
η ≥ 4(log k + 1), PRO returns a set S of size k such that

f(S \ E∗
S) ≥

η
5β3�log τ�+η

(
1− e

− k−|S0|
β(k−τ)

)
1 + η

5β3�log τ�+η

(
1− e

− k−|S0|
β(k−τ)

)f(OPT(k, V, τ) \ E∗
OPT(k,V,τ)), (6.7)

where E∗
S and E∗

OPT(k,V,τ) are defined as in (6.6).

In addition, if τ = o
(

k
η log k

)
and η ≥ log2 k, then we have the following as k → ∞:

f(S \ E∗
S) ≥

(
1− e−1/β

2− e−1/β
+ o(1)

)
f(OPT(k, V, τ) \ E∗

OPT(k,V,τ)). (6.8)

In particular, the PRO-GREEDY algorithm achieves an asymptotic approximation factor of
at least 0.387, and PRO-THRESHOLDING-GREEDY with the input parameter ε achieves an
asymptotic approximation factor of at least 0.387(1− ε).

This result solves an open problem raised in [OSU16], namely, whether a constant-factor

approximation guarantee can be obtained for τ = o(k) as opposed to only τ = o
(√

k
)
. In the

asymptotic limit, our constant factor of 0.387 for the greedy subroutine matches that of [OSU16],

but our algorithm permits significantly “higher robustness” in the sense of allowing larger τ

values. To achieve this, we require novel proof techniques, which we now outline.

6.2.4 High-level Overview of the Analysis

The proof of Theorem 6.2.1 is provided in Appendix 6.A.4. Here we provide a high-level

overview of the main challenges.

Let E denote a cardinality-τ subset of the returned set S that is removed. By the construction

of the partitions, it is easy to verify that each partition i contains a bucket from which at most 2i

items are removed. We denote these by B0, . . . , B�log τ�, and write EBi := E ∩Bi. Moreover,

we define E0 := E ∩ S0 and E1 := E ∩ S1.
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We establish the following lower bound on the final objective function value:

f(S \ E) ≥ max

{
f(S0 \ E0), f(S1)− f(E1|(S \ E)), f

( �log τ�⋃
i=0

(Bi \ EBi)

)}
. (6.9)

The arguments to the first and third terms are trivially seen to be subsets of the solution set S

after the adversarial removal E, i.e., S \ E, and the second term represents the utility of the set

S1 subsided by the utility of the elements removed from S1.

The first two terms above are easily lower bounded by convenient expressions via submodular

and the β-iterative property. The bulk of the proof is dedicated to bounding the third term. To do

this, we establish the following recursive relations with suitably-defined “small” values of αj :

f

(
j⋃

i=0

(Bi \ EBi)

)
≥

(
1− 1

1 + 1
αj

)
f(Bj) (6.10)

f

(
EBj

∣∣∣ j−1⋃
i=0

(Bi \ EBi)

)
≤ αjf

(
j−1⋃
i=0

(Bi \ EBi)

)
. (6.11)

Intuitively, the first equation shows that the objective value from buckets i = 0, . . . , j with
removals cannot be too much smaller than the value in bucket j without removals, and the second

one shows that the loss in bucket j due to the removals is at most a small fraction of the objective

value from buckets 0, . . . , j − 1. The proofs of both the base case of the induction and the

inductive step make use of submodularity properties and the β-iterative property (cf., Def. 6.2.1).

Once the suitable lower bounds are obtained for the terms in (6.9), we can show that as the

second term increases, the third term decreases, and accordingly lower bound their maximum by

the value obtained when the two are equal. A similar balancing argument is then applied to the

resulting term and the first term in (6.9). Finally, the condition τ ≤ k
3η(log k+2) follows directly

from Proposition 6.2.1; namely, it is a sufficient condition for |S0| ≤ k, as is required by PRO.

6.3 Experimental Evaluation

In this section, we numerically validate the performance of PRO and the claims given in the

preceding sections. In particular, we compare our algorithm against the OSU algorithm proposed

in [OSU16] on different datasets and corresponding objective functions (see Table 6.2). We

demonstrate matching or improved performance in a broad range of settings, as well as observing

that PRO can be implemented with larger values of τ , corresponding to a greater robustness.

Moreover, we show that for certain real-world data sets, the classic GREEDY algorithm can

perform badly for the robust problem. We do not compare against SATURATE [KMGG08], due

to its high computational cost for even a small τ .
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Dataset n dimension f

Tiny-10k 10 000 3074 Exemplar

Tiny-50k 50 000 3074 Exemplar

CM-Molecules 7211 276 Exemplar

Network # nodes # edges f

ego-Facebook 4039 88 234 DomSet

ego-Twitter 81 306 1 768 149 DomSet

Table 6.2: Datasets and corresponding objective functions.

Setup. Given a solution set S of size k, we measure the performance in terms of the mini-

mum objective value upon the worst-case removal of τ elements, i.e. minE⊆S,|E|≤τ f(S \E).

Unfortunately, for a given solution set S, finding such a set E is an instance of the submodular

minimization problem with a cardinality constraint,2 which is known to be NP-hard with polyno-

mial approximation factors [SF11]. Hence, in our experiments, we only implement the optimal

“adversary” (i.e., removal of items) for small to moderate values of τ and k, for which we use a

fast C++ implementation of branch-and-bound.

Despite the difficulty in implementing the optimal adversary, we observed in our experiments

that the greedy adversary, which iteratively removes elements to reduce the objective value as

much as possible, has a similar impact on the objective compared to the optimal adversary for

the data sets considered. Hence, we also provide a larger-scale experiment in the presence of a

greedy adversary. Throughout, we write OA and GA to abbreviate the optimal adversary and

greedy adversary, respectively.

In our experiments, the size of the robust part of the solution set (i.e., |S0|) is set to τ2 and

τ log τ for OSU and PRO, respectively. That is, we set η = 1 in PRO, and similarly ignore

constant and logarithmic factors in OSU, since both appear to be unnecessary in practice. We

show both the “raw” objective values of the solutions, as well as the objective values after the

removal of τ elements. In all experiments, we implement GREEDY using the LAZY-GREEDY

implementation given in [Min78].

The objective functions shown in Table 6.2 are given in Section 6.1.3. For the exemplar

objective function, we use d(s, v) = ‖s − v‖2, and let the reference element e0 be the zero

vector. Instead of using the whole set V , we approximate the objective by considering a smaller

random subset of V for improved computational efficiency. Since the objective is additively

decomposable and bounded, standard concentration bounds (e.g., the Chernoff bound) ensure

that the empirical mean over a random subsample can be made arbitrarily accurate.

Data sets. We consider the following datasets, along with the objectives given in Section 6.1.3:

2This can be seen by noting that for submodular f and any E ⊆ X ⊆ V , f ′(E) = f(X \E) remains submodular.
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• EGO-FACEBOOK: This network data consists of social circles (or friends lists) from

Facebook forming an undirected graph with 4039 nodes and 88234 edges.

• EGO-TWITTER: This dataset consists of 973 social circles from Twitter, forming a directed

graph with 81306 nodes and 1768149 edges. Both EGO-FACEBOOK and EGO-TWITTER

were used previously in [ML14].

• TINY10K and TINY50K: We used two Tiny Images data sets of size 10k and 50k consisting

of images each represented as a 3072-dimensional vector [TFF08]. Besides the number of

images, these two datasets also differ in the number of classes that the images are grouped

into. We shift each vector to have zero mean.

• CM-MOLECULES: It consists of 7211 small organic molecules, each represented as a 276

dimensional vector. Each vector is obtained by processing the molecule’s Coulomb matrix

representation [Rup15]. We shift and normalize each vector to zero mean and unit norm.

Results. In the first set of experiments, we compare PRO − GREEDY (written using the

shorthand PRO-GR in the legend) against GREEDY and OSU on the EGO-FACEBOOK and

EGO-TWITTER datasets. In this experiment, the dominating set selection objective in (6.1) is

considered. Figure 2 (a) and (c) show the results before and after the worst-case removal of τ = 7

elements for different values of k. In Figure 2 (b) and (d), we show the objective value for fixed

k = 50 and k = 100, respectively, while the robustness parameter τ is varied.

GREEDY achieves the highest raw objective value, followed by PRO-GREEDY and OSU.

However, after the worst-case removal, PRO-GREEDY-OA outperforms both OSU-OA and

GREEDY-OA. In Figure 2 (a) and (b), GREEDY-OA performs poorly due to a high concentration

of the objective value on the first few elements selected by GREEDY. While OSU requires

k ≥ τ2, PRO only requires k ≥ τ log τ , and hence it can be run for larger values of τ (e.g., see

Figure 2 (b) and (c)). Moreover, in Figure 2 (a) and (b), we can observe that although PRO uses a

smaller number of elements to build the robust part of the solution set, it has better robustness in

comparison with OSU.

In the second set of experiments, we perform the same type of comparisons on the TINY10

and CM-MOLECULES datasets. The exemplar based clustering in (6.2) is used as the objective

function. In Figure 2 (e) and (h), the robustness parameter is fixed to τ = 7 and τ = 6,

respectively, while the cardinality k is varied. In Figure 2 (f) and (h), the cardinality is fixed to

k = 100 and k = 50, respectively, while the robustness parameter τ is varied.

Again, GREEDY achieves the highest objective value. On TINY10, GREEDY-OA (Figure 2 (e)

and (f)) has a large gap between the raw and final objective, but it still slightly outperforms PRO-

GREEDY-OA. This demonstrates that GREEDY can work well in some cases, despite failing in

others. We observed that it succeeds here because the objective value is relatively more uniformly

spread across the selected elements. On the same dataset, PRO-GREEDY-OA outperforms

115



Chapter 6. Robust Submodular Maximization in the Presence of Adversarial Removals

Cardinality k
30 40 50 60 70 80 90 100

O
b
j.

va
lu
e

500

1000

1500

2000

2500

3000

3500

4000

(a) ego-Facebook, τ = 7

PRo-Gr
OSU
Greedy
PRo-Gr - OA
OSU - OA
Greedy - OA

Robustness τ
2 3 4 5 6 7 8 9 10

O
b
j.

va
lu
e

500

1000

1500

2000

2500

3000

3500

4000

(b) ego-Facebook, k = 50

Cardinality k
30 40 50 60 70 80 90 100

O
b
j.

va
lu
e

×104

2

2.5

3

3.5

4

(c) ego-Twitter, τ = 7

Robustness τ
2 3 4 5 6 7 8

O
b
j.

va
lu
e

×104

3.2

3.4

3.6

3.8

4

(d) ego-Twitter, k = 100

Cardinality k
30 40 50 60 70 80 90 100

O
b
j.

va
lu
e

×106

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
(e) Tiny10, τ = 7

Robustness τ
2 3 4 5 6 7

O
b
j.

va
lu
e

×106

2.9

3

3.1

3.2

(f) Tiny10, k = 100

Robustness τ
3 4 5 6 7 8 9

O
b
j.

va
lu
e

0.95

0.955

0.96

0.965

0.97

0.975

0.98
(g) CM-Molecules, k = 50

Cardinality k
40 50 60 70 80 90 100

O
b
j.

va
lu
e

0.955

0.96

0.965

0.97

0.975

0.98

0.985
(h) CM-Molecules, τ = 6

Robustness τ
4 6 8 10 12 14 16 18 20 22

O
b
j.

va
lu
e

×106

2.4

2.6

2.8

3

3.2

3.4

3.6

(i) Tiny50, k = 100

PRo-Gr
OSU
PRo-St ε = 0.01
PRo-St ε = 0.08
PRo-Gr - GA
OSU - GA
PRo-St - GA ε = 0.01
PRo-St - GA ε = 0.08

Figure 6.2: Numerical comparisons of the algorithms PRO-GREEDY, GREEDY and OSU, and

their objective values PRO-OA, OSU-OA and GREEDY-OA once τ elements are removed.

Figure (i) shows the performance on the larger scale experiment where both GREEDY and

STOCHASTIC-GREEDY are used as subroutines in PRO.

OSU-OA. On our second dataset CM-MOLECULES (Figure 2 (g) and (h)), PRO-GREEDY-OA

achieves the highest robust objective value, followed by OSU-OA and GREEDY-OA.

In our final experiment (see Figure 2 (i)), we compare the performance of PRO − GREEDY

against two instances of PRO − STOCHASTIC-GREEDY with ε = 0.01 and ε = 0.08 (shortened

to PRO-ST in the legend), seeking to understand to what extent using the more efficient stochastic

subroutine impacts the performance. We also show the performance of OSU. In this experiment,

we fix k = 100 and vary τ . We use the greedy adversary instead of the optimal one, since the

latter becomes computationally challenging for larger values of τ .

In Figure 2 (i), we observe a slight decrease in the objective value in the case of PRO −
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STOCHASTIC-GREEDY due to the stochastic optimization. On the other hand, the gaps between

the robust and non-robust solutions remain similar, or even shrink. Overall, we observe that at

least in this example, the stochastic subroutine does not compromise the quality of the solution

too significantly, despite having a lower computational complexity.
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6.A Proofs

6.A.1 Proof of Proposition 6.2.1

We have

|S0| =
�log τ�∑
i=0

�τ/2i�2iη

≤
�log τ�∑
i=0

( τ

2i
+ 1

)
2iη

≤ η(�log τ�+ 1)(τ + 2�log τ�)

≤ 3ητ(�log τ�+ 1)

≤ 3ητ(log k + 2).

6.A.2 Proof of Proposition 6.2.2

Recalling that Aj(T ) denotes a set constructed by the algorithm after j iterations, we have

f(Aj(T ))− f(Aj−1(T )) ≥ 1

β
max
e∈T

f(e|Aj−1(T ))

≥ 1

β
max
e∈T

f(e|Ak(T ))

≥ 1

β
max

e∈T\Ak(T )
f(e|Ak(T )), (6.12)

where the first inequality follows from the β-iterative property (6.3), and the second inequality

follows from Aj−1(S) ⊆ Ak(S) and the submodularity of f .

Continuing, we have

f(Ak(T )) =

k∑
j=1

f(Aj(T ))− f(Aj−1(T ))

≥ k

β
max

e∈T\Ak(T )
f(e|Ak(T )),

where the last inequality follows from (6.12).

By rearranging, we have for any e ∈ T \ Ak(T ) that

f(e|Ak(T )) ≤ β
f(Ak(T ))

k
.
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6.A.3 Proof of Lemma 6.2.1

Recalling that Aj(T ) denotes the set constructed after j iterations when applied to T , we have

max
e∈T\Aj−1(T )

f(e|Aj−1(T )) ≥ 1

k

∑
e∈OPT(k,T )\Aj−1(T )

f(e|Aj−1(T ))

≥ 1

k
f(OPT(k, T )|Aj−1(T ))

≥ 1

k

(
f(OPT(k, T ))− f(Aj−1(T ))

)
, (6.13)

where the first line holds since the maximum is lower bounded by the average, the line uses

submodularity, and the last line uses monotonicity.

By combining the β-iterative property with (6.13), we obtain

f(Aj(T ))− f(Aj−1(T )) ≥ 1

β
max

e∈T\Aj−1(T )
f(e|Aj−1(T ))

≥ 1

kβ

(
f(OPT(k, T ))− f(Aj−1(T ))

)
.

By rearranging, we obtain

f(OPT(k, T ))− f(Aj−1(T )) ≤ βk
(
f(Aj(T ))− f(Aj−1(T ))

)
. (6.14)

We proceed by following the steps from the proof of Theorem 1.5 in [KG12]. Defining δj :=

f(OPT(k, T )) − f(Aj(T )), we can rewrite (6.14) as δj−1 ≤ βk(δj−1 − δj). By rearranging,

we obtain

δj ≤
(
1− 1

βk

)
δj−1.

Applying this recursively, we obtain δl ≤
(
1 − 1

βk

)l
δ0, where δ0 = f(OPT(k, T )) since f is

normalized (i.e., f(∅) = 0). Finally, applying 1− x ≤ e−x and rearranging, we obtain

f(Al(T )) ≥
(
1− e

− l
βk

)
f(OPT(k, T )).

6.A.4 Proof of Theorem 6.2.1

Technical Lemmas

We first provide several technical lemmas that will be used throughout the proof. We begin with

a simple property of submodular functions.

Lemma 6.A.1. For any submodular function f on a ground set V , and any sets A,B,R ⊆ V ,
we have

f(A ∪B)− f(A ∪ (B \R)) ≤ f(R | A).
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Proof. Define R2 := A ∩R, and R1 := R \A = R \R2. We have

f(A ∪B)− f(A ∪ (B \R)) = f(A ∪B)− f((A ∪B) \R1)

= f(R1 | (A ∪B) \R1)

≤ f(R1 | (A \R1)) (6.15)

= f(R1 | A) (6.16)

= f(R1 ∪R2 | A) (6.17)

= f(R | A),

where (6.15) follows from the submodularity of f , (6.16) follows since A and R1 are disjoint,

and (6.17) follows since R2 ⊆ A.

The next lemma provides a simple lower bound on the maximum of two quantities; it is stated

formally since it will be used on multiple occasions.

Lemma 6.A.2. For any set function f , sets A,B, and constant α > 0, we have

max{f(A), f(B)− αf(A)} ≥
(

1

1 + α

)
f(B), (6.18)

and

max{αf(A), f(B)− f(A)} ≥
(

α

1 + α

)
f(B). (6.19)

Proof. Starting with (6.18), we observe that one term is increasing in f(A) and the other is

decreasing in f(A). Hence, the maximum over all possible f(A) is achieved when the two terms

are equal, i.e., f(A) = 1
1+αf(B). We obtain (6.19) via the same argument.

The following lemma relates the function values associated with two buckets formed by PRO,

denoted by X and Y . It is stated with respect to an arbitrary set EY , but when we apply the

lemma, this will correspond to the elements of Y that are removed by the adversary.

Lemma 6.A.3. Under the setup of Theorem 6.2.1, let X and Y be buckets of PRO such that Y is
constructed at a later time than X . For any set EY ⊆ Y , we have

f(X ∪ (Y \ EY )) ≥ 1

1 + α
f(Y ),

and
f(EY | X) ≤ αf(X), (6.20)

where
α = β |EY |

|X| .
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Proof. Inequality (6.20) follows from the β-iterative property of A; specifically, we have

from (6.5) that

f(e|X) ≤ β
f(X)

|X| ,

where e is any element of the ground set that is neither in X nor any bucket constructed before

X . Hence, we can write

f(EY | X) ≤
∑
e∈EY

f(e|X) ≤ β
|EY |
|X| f(X) = αf(X),

where the first inequality is by submodularity. This proves (6.20).

Next, we write

f(Y )− f(X ∪ (Y \ EY )) ≤ f(X ∪ Y )− f(X ∪ (Y \ EY )) (6.21)

≤ f(EY | X), (6.22)

(6.21) is by monotonicity, and (6.22) is by Lemma 6.A.1 with A = X , B = Y , and R = EY .

Combining (6.20) and (6.22), together with the fact that f(X ∪ (Y \ EY )) ≥ f(X) (by

monotonicity), we have

f(X ∪ (Y \ EY )) ≥ max {f(X), f(Y )− αf(X)} ≥ 1

1 + α
f(Y ), (6.23)

where (6.23) follows from (6.18).

Finally, we provide a lemma that will later be used to take two bounds that are known regarding

the previously-constructed buckets, and use them to infer bounds regarding the next bucket.

Lemma 6.A.4. Under the setup of Theorem 6.2.1, let Y and Z be buckets of PRO such that Z is
constructed at a later time than Y , and let EY ⊆ Y and EZ ⊆ Z be arbitrary sets. Moreover, let
X be a set (not necessarily a bucket) such that

f((Y \ EY ) ∪X) ≥ 1

1 + α
f(Y ), (6.24)

f(EY | X) ≤ αf(X). (6.25)

Then, we have

f(EZ | (Y \ EY ) ∪X) ≤ αnextf((Y \ EY ) ∪X), (6.26)

f((Z \ EZ) ∪ (Y \ EY ) ∪X) ≥ 1

1 + αnext
f(Z), (6.27)

where αnext = β |EZ |
|Y | (1 + α) + α.
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Proof. We first prove (6.26):

f(EZ | (Y \ EY ) ∪X) = f((Y \ EY ) ∪X ∪ EZ)− f((Y \ EY ) ∪X)

≤ f(X ∪ Y ∪ EZ)− f((Y \ EY ) ∪X) (6.28)

= f(EZ | X ∪ Y ) + f(X ∪ Y )− f((Y \ EY ) ∪X)

≤ f(EZ | Y ) + f(X ∪ Y )− f((Y \ EY ) ∪X) (6.29)

≤ β
|EZ |
|Y | f(Y ) + f(X ∪ Y )− f((Y \ EY ) ∪X) (6.30)

≤ β
|EZ |
|Y | (1 + α)f((Y \ EY ) ∪X) + f(X ∪ Y )− f((Y \ EY ) ∪X)

(6.31)

≤ β
|EZ |
|Y | (1 + α)f((Y \ EY ) ∪X) + f(EY | (Y \ EY ) ∪X)

(6.32)

≤ β
|EZ |
|Y | (1 + α)f((Y \ EY ) ∪X) + f(EY | X) (6.33)

≤ β
|EZ |
|Y | (1 + α)f((Y \ EY ) ∪X) + αf(X) (6.34)

≤ β
|EZ |
|Y | (1 + α)f((Y \ EY ) ∪X) + αf((Y \ EY ) ∪X) (6.35)

=

(
β
|EZ |
|Y | (1 + α) + α

)
f((Y \ EY ) ∪X)., (6.36)

where: (6.28) and (6.29) follow by monotonicity and submodularity, respectively; (6.30) follows

from the second part of Lemma 6.A.3; (6.31) follows from (6.24); (6.32) is obtained by applying

Lemma 6.A.1 for A = X , B = Y , and R = EY ; (6.33) follows by submodularity; (6.34) follows

from (6.25); (6.35) follows by monotonicity. Finally, by defining αnext := β |EZ |
|Y | (1 + α) + α

in (6.36) we establish the bound in (6.26).

In the rest of the proof, we show that (6.27) holds as well. First, we have

f((Z \ EZ) ∪ (Y \ EY ) ∪X) ≥ f(Z)− f(EZ | (Y \ EY ) ∪X) (6.37)

by Lemma 6.A.1 with B = Z, R = EZ and A = (Y \ EY ) ∪X . Now we can use the derived

bounds (6.36) and (6.37) to obtain

f((Z \ EZ) ∪ (Y \ EY ) ∪X) ≥ f(Z)− f(EZ | (Y \ EY ) ∪X)

≥ f(Z)−
(
β
|EZ |
|Y | (1 + α) + α

)
f((Y \ EY ) ∪X).
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Finally, we have

f((Z \ EZ) ∪ (Y \ EY ) ∪X) ≥ max

{
f((Y \ EY ) ∪X),

f(Z)−
(
β
|EZ |
|Y | (1 + α) + α

)
f((Y \ EY ) ∪X)

}
≥ 1

1 + αnext
f(Z),

where the last inequality follows from Lemma 6.A.1.

Observe that the results we obtain on f(EZ | (Y \EY )∪X) and on f((Z\EZ)∪(Y \EY )∪X)

in Lemma 6.A.4 are of the same form as the pre-conditions of the lemma. This will allow us to

apply the lemma recursively.

Characterizing the Adversary

Let E denote a set of elements removed by an adversary, where |E| ≤ τ . Within S0, PRO

constructs �log τ�+ 1 partitions. Each partition i ∈ {0, . . . , �log τ�} consists of �τ/2i� buckets,

each of size 2iη, where η ∈ N will be specified later. We let B denote a generic bucket, and

define EB to be all the elements removed from this bucket, i.e. EB = B ∩ E.

The next lemma identifies a bucket in each partition for which not too many elements are

removed.

Lemma 6.A.5. Under the setup of Theorem 6.2.1, suppose that an adversary removes a set E of
size at most τ from the set S constructed by PRO. Then for each partition i, there exists a bucket
Bi such that |EBi | ≤ 2i, i.e., at most 2i elements are removed from this bucket.

Proof. Towards contradiction, assume that this is not the case, i.e., assume |EBi | > 2i for every

bucket of the i-th partition. As the number of buckets in partition i is �τ/2i�, this implies that the

adversary has to spend a budget of

|E| ≥ 2i|EBi | > 2i�τ/2i� = τ,

which is in contradiction with |E| ≤ τ .

We consider B0, . . . , B�log τ� as above, and show that even in the worst case, we have that

f
(⋃�log τ�

i=0 (Bi \ EBi)
)

is almost as large as f
(
B�log τ�

)
for appropriately set η. To achieve this,

we apply Lemma 6.A.4 multiple times, as illustrated in the following lemma. We henceforth

write ηh := η/2 for brevity.
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Lemma 6.A.6. Under the setup of Theorem 6.2.1, suppose that an adversary removes a set E of
size at most τ from the set S constructed by PRO, and let B0, · · · , B�log τ� be buckets such that
|EBi | ≤ 2i for each i ∈ {1, · · · �log τ�} (cf., Lemma 6.A.5). Then,

f

⎛⎝�log τ�⋃
i=0

(Bi \ EBi)

⎞⎠ ≥
(
1− 1

1 + 1
α

)
f
(
B�log τ�

)
=

1

1 + α
f
(
B�log τ�

)
, (6.38)

and

f

⎛⎝EB�log τ�

∣∣∣ �log τ�−1⋃
i=0

(Bi \ EBi)

⎞⎠ ≤ αf

⎛⎝�log τ�−1⋃
i=0

(Bi \ EBi)

⎞⎠ , (6.39)

for some

α ≤ β2 (1 + ηh)
�log τ� − η

�log τ�
h

η
�log τ�
h

. (6.40)

Proof. In what follows, we focus on the case where there exists some bucket B0 in partition

i = 0 such that B0 \ EB0 = B0. If this is not true, then E must be contained entirely within

this partition, since it contains τ buckets. As a result, (i) we trivially obtain (6.38) even when α

is replaced by zero, since the union on the left-hand side contains B�log τ�; (ii) (6.39) becomes

trivial since the left-hand side is zero is a result of EB�log τ� = ∅.

We proceed by induction. Namely, we show that

f

(
j⋃

i=0

(Bi \ EBi)

)
≥

(
1− 1

1 + 1
αj

)
f(Bj) =

1

1 + αj
f(Bj), and (6.41)

f

(
EBj

∣∣∣ j−1⋃
i=0

(Bi \ EBi)

)
≤ αjf

(
j−1⋃
i=0

(Bi \ EBi)

)
, (6.42)

for every j ≥ 1, where

αj ≤ β2 (1 + ηh)
j − ηjh

ηjh
. (6.43)

Upon showing this, the lemma is concluded by setting j = �log τ�.

Base case j = 1. In the case that j = 1, taking into account that EB0 = ∅, we observe

from (6.41) that our goal is to bound f(B0∪ (B1 \EB1)). Applying Lemma 6.A.3 with X = B0,

Y = B1, and EY = EB1 , we obtain

f(B0 ∪ (B1 \ EB1)) ≥
1

1 + α1
f(B1),

f(EB1 | B0) ≤ α1f(B0),

α1 = β
|EB1

|
|B0| .
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We have |B0| = η, while |EB1 | ≤ 2 by assumption. Hence, we can bound α1 and rewrite as

α1 ≤ β
2

η
= β

1

ηh
= β

(1 + ηh)− ηh
ηh

≤ β2 (1 + ηh)− ηh
ηh

,

where the last inequality follows since β ≥ 1 by definition.

Inductive step. Fix j ≥ 2. Assuming that the inductive hypothesis holds for j − 1, we want

to show that it holds for j as well.

We write

f

(
j⋃

i=0

(Bi \ EBi)

)
= f

((
j−1⋃
i=0

(Bi \ EBi)

)
∪ (Bj \ EBj )

)
,

and apply Lemma 6.A.4 with X =
⋃j−2

i=0 (Bi \ EBi), Y = Bj−1, EY = EBj−1 , Z = Bj , and

EZ = EBj . Note that the conditions (6.24) and (6.25) of Lemma 6.A.4 are satisfied by the

inductive hypothesis. Hence, we conclude that (6.41) and (6.42) hold with αj = β
|EBj

|
|Bj−1|(1 +

αj−1) + αj−1. It remains to show that (6.43) holds for αj , assuming it holds for αj−1. We have

αj = β
|EBj |
|Bj−1|(1 + αj−1) + αj−1

≤ β
1

ηh

(
1 + β

(1 + ηh)
j−1 − ηj−1

h

ηj−1
h

)
+ β

(1 + ηh)
j−1 − ηj−1

h

ηj−1
h

(6.44)

≤ β2

(
1

ηh

(
1 +

(1 + ηh)
j−1 − ηj−1

h

ηj−1
h

)
+

(1 + ηh)
j−1 − ηj−1

h

ηj−1
h

)
(6.45)

= β2

(
1

ηh

(1 + ηh)
j−1

ηj−1
h

+
(1 + ηh)

j−1 − ηj−1
h

ηj−1
h

)

= β2

(
(1 + ηh)

j−1

ηjh
+

ηh(1 + ηh)
j−1 − ηjh

ηjh

)

= β2 (1 + ηh)
j − ηjh

ηjh
,

where (6.44) follows from (6.43) and the fact that

β
|EBj |
|Bj−1| ≤ β

2j

2j−1η
= β

2

η
= β

1

ηh
,

by |EBj | ≤ 2j and |Bj−1| = 2j−1η; and (6.45) follows since β ≥ 1.

Inequality (6.43) provides an upper bound on αj , but it is not immediately clear how the bound

varies with j. The following lemma provides a more compact form.
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Lemma 6.A.7. Under the setup of Lemma 6.A.6, we have for 2�log τ� ≤ ηh that

αj ≤ 3β2 j

η
(6.46)

Proof. We unfold the right-hand side of (6.43) in order to express it in a simpler way. First,

consider j = 1. From (6.43) we obtain α1 ≤ 2β2 1
η , as required. For j ≥ 2, we obtain:

β−2αj ≤ (1 + ηh)
j − ηjh

ηjh

=

j−1∑
i=0

(
j

i

)
ηih
ηjh

(6.47)

=
j

ηh
+

j−2∑
i=0

(
j

i

)
ηih
ηjh

(6.48)

=
j

ηh
+

j−2∑
i=0

(∏j−i
t=1(j − t+ 1)∏j−i

t=1 t

ηih
ηjh

)

≤ j

ηh
+

1

2

j−2∑
i=0

jj−i η
i
h

ηjh
(6.49)

=
j

ηh
+

1

2

j−2∑
i=0

(
j

ηh

)j−i

=
j

ηh
+

1

2

(
−1− j

ηh
+

j∑
i=0

(
j

ηh

)j−i
)
,

where (6.47) is a standard summation identity, and (6.49) follows from
∏j−i

t=1(j − t+ 1) ≤ jj−i

and
∏j−i

t=1 t ≥ 2 for j − i ≥ 2. Next, we explicitly evaluate the summation of the last equality:

β−2αj ≤ j

ηh
+

1

2

⎛⎜⎝−1− j

ηh
+

1−
(

j
ηh

)j+1

1− j
ηh

⎞⎟⎠
≤ j

ηh
+

1

2

(
−1− j

ηh
+

1

1− j
ηh

)

=
j

ηh
+

1

2

⎛⎜⎝
(

j
ηh

)2

1− j
ηh

⎞⎟⎠ (6.50)

=
j

ηh
+

j

2ηh

(
j
ηh

1− j
ηh

)
, (6.51)

where (6.50) follows from (−a− 1)(−a+ 1) = a2 − 1 with a = j/ηh.
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Next, observe that if j/ηh ≤ 1/2, or equivalently

2j ≤ ηh, (6.52)

then we can weaken (6.51) to

β−2αj ≤ j

ηh
+

j

2ηh
=

3

2

j

ηh
= 3

j

η
, (6.53)

which yields (6.46).

Completing the Proof of Theorem 6.2.1

We now prove Theorem 6.2.1 in several steps. We define μ to be a constant such that f(E1 | (S \
E)) = μf(S1) holds, and we write E0 := E∗

S ∩S0, E1 := E∗
S ∩S1, and EBi := E∗

S ∩Bi, where

E∗
S is defined in (6.6). We also make use of the following lemma characterizing the optimal

adversary. The proof is straightforward, and can be found in Lemma 2 of [OSU16].

Lemma 6.A.8. [OSU16] Under the setup of Theorem 6.2.1, for all X ⊂ V with |X| ≤ τ holds

f(OPT(k, V, τ) \ E∗
OPT(k,V,τ)) ≤ f(OPT(k − τ, V \X)).

Initial lower bounds: We start by providing three lower bounds on f(S \ E∗
S). First, we

observe that f(S \ E∗
S) ≥ f(S0 \ E0) and f(S \ E∗

S) ≥ f
(⋃�log τ�

i=0 (Bi \ EBi)
)

. We also have

f(S \ E) = f(S)− f(S) + f(S \ E)

= f(S0 ∪ S1) + f(S \ E0)− f(S \ E0)− f(S) + f(S \ E) (6.54)

= f(S1) + f(S0 | S1) + f(S \ E0)− f(S)− f(S \ E0) + f(S \ E)

= f(S1) + f(S0 | (S \ S0)) + f(S \ E0)− f(E0 ∪ (S \ E0))

− f(S \ E0) + f(S \ E) (6.55)

= f(S1) + f(S0 | (S \ S0))− f(E0 | (S \ E0))− f(S \ E0) + f(S \ E)

= f(S1) + f(S0 | (S \ S0))− f(E0 | (S \ E0))− f(E1 ∪ (S \ E)) + f(S \ E)

(6.56)

= f(S1) + f(S0 | (S \ S0))− f(E0 | (S \ E0))− f(E1 | S \ E)

= f(S1)− f(E1 | S \ E) + f(S0 | (S \ S0))− f(E0 | (S \ E0))

≥ (1− μ)f(S1), (6.57)

where (6.54) and (6.55) follow from S = S0∪S1, (6.56) follows from E∗
S = E0∪E1, and (6.57)

follows from f(S0 | (S \ S0))− f(E0 | (S \ E0)) ≥ 0 (due to E0 ⊆ S0 and S \ S0 ⊆ S \ E0),

along with the definition of μ.
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By combining the above three bounds on f(S \ E∗
S), we obtain

f(S \ E∗
S) ≥ max

⎧⎨⎩f(S0 \ E0), (1− μ)f(S1), f

⎛⎝�log τ�⋃
i=0

(Bi \ EBi)

⎞⎠⎫⎬⎭ . (6.58)

We proceed by further bounding these terms.

Bounding the first term in (6.58): Defining S′
0 := OPT(k − τ, V \ E0) ∩ (S0 \ E0) and

X := OPT(k − τ, V \ E0) \ S′
0, we have

f(S0 \ E0) + f(OPT(k − τ, V \ S0)) ≥ f(S′
0) + f(X) (6.59)

≥ f(OPT(k − τ, V \ E0)) (6.60)

≥ f(OPT(k, V, τ) \ E∗
OPT(k,V,τ)), (6.61)

where (6.59) follows from monotonicity, i.e. (S0 \ E0) ⊆ S′
0 and (V \ S0) ⊆ (V \ E0), (6.60)

follows from the fact that OPT(k− τ, V \E0) = S′
0∪X and submodularity,3 and (6.61) follows

from Lemma 6.A.8 and |E0| ≤ τ . We rewrite (6.61) as

f(S0 \ E0) ≥ f(OPT(k, V, τ) \ E∗
OPT(k,V,τ))− f(OPT(k − τ, V \ S0)). (6.62)

Bounding the second term in (6.58): Note that S1 is obtained by using A that satisfies the

β-iterative property on the set V \ S0, and its size is |S1| = k − |S0|. Hence, from Lemma 6.2.1

with k − τ in place of k, we have

f(S1) ≥
(
1− e

− k−|S0|
β(k−τ)

)
f(OPT(k − τ, V \ S0)). (6.63)

Bounding the third term in (6.58): We can view S1 as a large bucket created by our al-

gorithm after creating the buckets in S0. Therefore, we can apply Lemma 6.A.4 with X =⋃�log τ�−1
i=0 (Bi \ EBi), Y = B�log τ�, Z = S1, EY = E∗

S ∩ Y , and EZ = E1. Conditions (6.24)

and (6.25) needed to apply Lemma 6.A.4 are provided by Lemma 6.A.6. From Lemma 6.A.4, we

obtain the following with α as in (6.40):

f

⎛⎝E1

∣∣∣∣∣
⎛⎝�log τ�⋃

i=0

(Bi \ EBi)

⎞⎠ ∪ (S1 \ E1)

⎞⎠ ≤
(
β

|E1|
|B�log τ�|

(1 + α) + α

)

×f

⎛⎝�log τ�⋃
i=0

(Bi \ EBi)

⎞⎠ . (6.64)

3The submodularity property can equivalently be written as f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).
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6.A. Proofs

Furthermore, noting that the assumption η ≥ 4(log k+1) implies 2�log τ� ≤ ηh, we can upper-

bound α as in Lemma 6.A.7 by (6.46) for j = �log τ�. Also, we have β |E1|
|B�log τ�| ≤ β τ

2�log τ�η ≤ β
η .

Putting these together, we upper bound (6.64) as follows:

f

⎛⎝E1

∣∣∣∣∣
⎛⎝�log τ�⋃

i=0

(Bi \ EBi)

⎞⎠ ∪ (S1 \ E1)

⎞⎠ ≤
(
β

η

(
1 +

3β2�log τ�
η

)
+

3β2�log τ�
η

)

×f

⎛⎝�log τ�⋃
i=0

(Bi \ EBi)

⎞⎠ ≤ 5β3�log τ�
η

f

⎛⎝�log τ�⋃
i=0

(Bi \ EBi)

⎞⎠ ,

where we have used η ≥ 1 and �log τ� ≥ 1 (since τ ≥ 2 by assumption). We rewrite this as

f

⎛⎝�log τ�⋃
i=0

(Bi \ EBi)

⎞⎠ ≥ η

5β3�log τ�f
⎛⎝E1

∣∣∣∣∣
⎛⎝�log τ�⋃

i=0

(Bi \ EBi)

⎞⎠ ∪ (S1 \ E1)

⎞⎠
≥ η

5β3�log τ�f(E1 | (S \ E)) (6.65)

=
η

5β3�log τ�μf(S1), (6.66)

where (6.65) follows from submodularity, and (6.66) follows from the definition of μ.

Combining the bounds: Returning to (6.58), we have

f(S \ E∗
S) ≥ max

⎧⎨⎩f(S0 \ E0), (1− μ)f(S1), f

⎛⎝�log τ�⋃
i=0

(Bi \ EBi)

⎞⎠⎫⎬⎭
≥ max

{
f(S0 \ E0), (1− μ)f(S1),

η

5β3�log τ�μf(S1)

}
(6.67)

≥ max{f(OPT(k, V, τ) \ E∗
OPT(k,V,τ))− f(OPT(k − τ, V \ S0)),

(1− μ)

(
1− e

− k−|S0|
β(k−τ)

)
f(OPT(k − τ, V \ S0)),

η

5β3�log τ�μ
(
1− e

− k−|S0|
β(k−τ)

)
f(OPT(k − τ, V \ S0))} (6.68)

≥ max{f(OPT(k, V, τ) \ E∗
OPT(k,V,τ))− f(OPT(k − τ, V \ S0)),

η
5β3�log τ�

1 + η
5β3�log τ�

(
1− e

− k−|S0|
β(k−τ)

)
f(OPT(k − τ, V \ S0))} (6.69)

= max{f(OPT(k, V, τ) \ E∗
OPT(k,V,τ))− f(OPT(k − τ, V \ S0)),

η

5β3�log τ�+ η

(
1− e

− k−|S0|
β(k−τ)

)
f(OPT(k − τ, V \ S0))}

(6.70)

129



Chapter 6. Robust Submodular Maximization in the Presence of Adversarial Removals

Finally, we obtain:

f(S \ E∗
S) ≥

η
5β3�log τ�+η

(
1− e

− k−|S0|
β(k−τ)

)
1 + η

5β3�log τ�+η

(
1− e

− k−|S0|
β(k−τ)

)f(OPT(k, V, τ) \ E∗
OPT(k,V,τ)), (6.71)

where (6.67) follows from (6.66), (6.68) follows from (6.62) and (6.63), (6.69) follows since

max{1− μ, cμ} ≥ c
1+c analogously to (6.18), and (6.71) follows from (6.19). Hence, we have

established (6.71).

Turning to the permitted values of τ , we have from Proposition 6.2.1 that

|S0| ≤ 3ητ(log k + 2).

For the choice of τ to yield valid set sizes, we only require |S0| ≤ k; hence, it suffices that

τ ≤ k

3η(log k + 2)
. (6.72)

Finally, we consider the second claim of the lemma. For τ ∈ o
(

k
η(log k)

)
we have |S0| ∈ o(k).

Furthermore, by setting η ≥ log2 k (which satisfies the assumption η ≥ 4(log k + 1) for large k),

we get
k−|S0|
β(k−τ) → β−1 and η

5β3�log τ�+η
→ 1 as k → ∞. Hence, the constant factor converges to

1−e−1/β

2−e−1/β , yielding (6.8). In the case that GREEDY is used as the subroutine, we have β = 1, and

hence the constant factor converges t 1−e−1

2−e−1 ≥ 0.387. If THRESHOLDING-GREEDY is used, we

have β = 1
1−ε , and hence the constant factor converges to 1−eε−1

2−eε−1 ≥ (1−ε)1−e−1

2−e−1 ≥ (1−ε)0.387.
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7 Adversarially Robust Maximization of
Non-Submodular Objectives

In this chapter, we consider the same adversarially robust optimization formulation from Chapter 6

in the case when the objective function is non-submodular. This setting is motivated by the

various machine learning problems in which the objective function does not satisfy the natural

notion of diminishing returns, i.e., submodularity. While there exist constant factor approximation

guarantees when the objective is submodular (see Chapter 6 and Section 2.3), it is not known

whether similar guarantees hold in the non-submodular case. We propose a simple and practical

algorithm OBLIVIOUS-GREEDY and prove the first constant-factor approximation guarantees for

a wider class of non-submodular objectives. We consider two applications in which the objective

is non-submodular, namely, sparse feature selection and batch Bayesian optimization, and obtain

the first robust theoretical guarantees for these problems.

This chapter is based on the joint work with Junyao Zhao* and Volkan Cevher [BZC18].

7.1 Introduction

An important problem in machine learning is the one of feature selection, where the goal is to

extract a subset of features that are informative with respect to a given task (e.g., classification).

For some tasks, it is of great importance to select features that exhibit robustness against dele-

tions. This is particularly relevant in domains with non-stationary feature distributions or with

input sensor failures [GR06]. Another important example is the optimization of an unknown

function from point evaluations that require performing costly experiments (this problem is

extensively studied in Chapters 3–5). When the expensive experiments can fail it is essential to

protect against worst-case failures. In these and many other applications, the objective function is

not submodular and hence the guarantees that are obtained in Chapter 6 are not applicable.

In this chapter, we consider the robust maximization of non-submodular functions in the case

of adversarial removals, and we investigate whether the constant factor approximation guarantees

can be obtained in this setting.
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7.1.1 Problem Statement

Let V be a ground set with cardinality |V | = n, and let f : 2V → R+ be a normalized monotone

set function defined on V . We consider the same robust problem formulation as in the previous

chapter, that is

max
S⊆V,|S|≤k

min
E⊆S,|E|≤τ

f(S \ E), (7.1)

with the important difference that the objective function f no longer satisfies submodularity. As

before, τ is the size of subset E that is removed from the solution set S. The solution set is

of size k, and the budget of the adversary τ is at most k. When the objective function exhibits

submodularity, a constant factor approximation guarantee can be obtained for this problem (see

Chapter 6). However, in many important applications such as the mentioned feature selection

problem, the objective function f(·) is not submodular.

7.1.2 Related Work

It is well-known that when the objective is submodular, the simple GREEDY algorithm [NWF78]

achieves a (1 − 1/e)-multiplicative approximation guarantee for the problem of monotone

submodular maximization subject to cardinality constraint (see Section 2.3). The constant

factor can be further improved by exploiting the properties of the objective function, such as

the closeness to being modular captured by the notion of curvature [CC84, Von10, IJB13]. In

many cases, the GREEDY algorithm performs well empirically even when the objective function

deviates from being submodular. An important class of such objectives is γ-weakly submodular

functions. Simply put, submodularity ratio γ is a quantity that characterizes how close the

function is to being submodular. It was first introduced in [DK11], where it was shown that for

such functions the approximation ratio of GREEDY degrades slowly as the submodularity ratio

decreases, i.e., as (1− e−γ). In [BBKT17], the authors obtain the approximation guarantee of

the form α−1(1− e−γα), that further depends on the curvature α.

In the submodular setting, the first efficient algorithm and constant factor guarantees for Prob-

lem (7.1) were obtained in [OSU16] for τ = o(
√
k). Our algorithm PRO-GREEDY (presented in

the previous chapter) attains the same 0.387-guarantee but it allows for greater robustness, i.e. the

allowed number of removed elements is τ = o(k). It is not clear how the obtained guarantees

generalize for non-submodular functions. The curvature-dependent constant factor approximation

guarantees that hold for any number of removals have been recently obtained in the submodular

setting [TGJP17].

One important class of non-submodular functions that we consider in this chapter are those

used for support/feature selection:

f(S) := max
x∈X ,supp(x)⊆S

l(x), (7.2)

where l is a continuous function, X is a convex set and supp(x) = {i : xi 	= 0} is the support set.
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7.1. Introduction

A popular way to solve the problem of finding a k-sparse vector that maximizes l(·), i.e.,

x ∈ argmax
x∈X ,‖x‖0≤k

l(x)

is to maximize the auxiliary set function in (7.2) subject to the cardinality constraint k. This setting

and its variants have been used in various applications, e.g., sparse approximation [DK11, CK11],

feature selection [KED+17], sparse recovery [CRT06], sparse M-estimation [JTK14] and column

subset selection problems [ABF+16]. An important result from [EKDN16] states that if l(·) is

(m,L)-(strongly concave, smooth) then f(S) is weakly submodular with submodularity ratio

γ ≥ m
L . Consequently, this result enlarges the number of problems where GREEDY comes with

guarantees. In Section 7.4.1, we consider the robust version of this problem with the goal of

protecting against the worst-case deletions of features.

7.1.3 Contributions

The main contributions of this chapter are:

• We initiate the study of the robust optimization Problem (7.1) for a wider class of monotone

non-submodular functions. In Section 7.3, we present a simple and practical algorithm

OBLIVIOUS-GREEDY and prove the first constant factor approximation guarantees for

Problem (7.1). When the function is submodular and under specific conditions, we recover

the approximation guarantees obtained in the previous chapter.

• In the non-submodular setting, we obtain the first constant factor approximation guarantees

for the linear regime, that is, when the number of removals τ = �ck� for some c ∈ (0, 1).

• Our theoretical bounds are expressed in terms of parameters that further characterize a set

function. We prove some interesting relations between these parameters in Section 7.2

and obtain theoretical bounds for them in two important applications: (i) sparse feature

selection and (ii) variance reduction objective used in batch Bayesian optimization. This

allows us to obtain the first robust guarantees for these two important objectives.

• In Section 7.4.1, we show the new connection between strong convexity and weak super-
modularity. Our result (in Proposition 7.4.1) complements the one in [EKDN16] where the

same connection between strong convexity and weak submodularity is established. This

result can be of interest in other combinatorial optimization works, where it can potentially

enlarge the number of applications where (weak) supermodularity can be exploited.

• In Section 7.5, we experimentally validate the robustness of OBLIVIOUS-GREEDY in

several scenarios and show that it outperforms other robust and non-robust algorithms. In

the feature selection task, we empirically demonstrate that the set of features selected by

OBLIVIOUS-GREEDY achieves better robust generalization performance in comparison to

other algorithms when it comes to the previously unseen test data.
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7.2 Set Function Ratios

In this section, we consider a normalized monotone set function f : 2V → R+; we proceed

by defining several quantities that characterize such a set function and show some useful new
relations among them. Our main theoretical results from subsequent sections will depend on

these quantities. Some of these parameters were introduced and used in different previous works,

while a few of them are novel.

Definition 7.2.1 (Submodularity [DK11] and Supermodularity ratio). The submodularity ratio
of f(·) is the largest scalar γ ∈ [0, 1] s.t.∑

i∈Ω f({i}|S)
f(Ω|S) ≥ γ, ∀ disjoint S,Ω ⊆ V. (7.3)

while the supermodularity ratio is the largest scalar γ̌ ∈ [0, 1] s.t.

f(Ω|S)∑
i∈Ω f({i}|S) ≥ γ̌, ∀ disjoint S,Ω ⊆ V. (7.4)

The function f(·) is submodular (supermodular) iff γ = 1 (γ̌ = 1). Hence, the submodular-

ity/supermodularity ratio measures to what extent the function has submodular/supermodular

properties. While f(·) is modular iff γ = γ̌ = 1, in general, γ can be different from γ̌. Hence,

f(·) can be both γ-weakly submodular and γ̌-weakly supermodular.

Definition 7.2.2 (Generalized curvature [Von10, BBKT17] and inverse generalized curvature).
The generalized curvature of f(·) is the smallest scalar α ∈ [0, 1] s.t.

f({i}|S \ {i} ∪ Ω)

f({i}|S \ {i}) ≥ 1− α, ∀S,Ω ⊆ V, i ∈ S \ Ω, (7.5)

while the inverse generalized curvature is the smallest scalar α̌ ∈ [0, 1] s.t.

f({i}|S \ {i})
f({i}|S \ {i} ∪ Ω)

≥ 1− α̌, ∀S,Ω ⊆ V, i ∈ S \ Ω. (7.6)

The function f(·) is submodular (supermodular) iff α̌ = 0 (α = 0). The function is modular

iff α = α̌ = 0. In general, α can be different from α̌.

Definition 7.2.3 (Sub/Superadditivity ratio). The subadditivity ratio of f(·) is the largest scalar
ν ∈ [0, 1] such that ∑

i∈S f({i})
f(S)

≥ ν, ∀S ⊆ V. (7.7)

The superadditivity ratio is the largest scalar ν̌ ∈ [0, 1] such that

f(S)∑
i∈S f({i}) ≥ ν̌, ∀S ⊆ V. (7.8)
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If the function is submodular (supermodular) then ν = 1 (ν̌ = 1).

The following proposition captures the relation between the above quantities.

Proposition 7.2.1. For any f(·), the following relations hold:

ν ≥ γ ≥ 1− α̌ and ν̌ ≥ γ̌ ≥ 1− α.

We also provide a more general definition of the bipartite subadditivity ratio used in [KED+17].

Definition 7.2.4 (Bipartite subadditivity ratio). The bipartite subadditivity ratio of f(·) is the
largest scalar θ ∈ [0, 1] s.t.

f(A) + f(B)

f(S)
≥ θ, ∀S ⊆ V,A ∪B = S,A ∩B = ∅. (7.9)

Remark 1. For any f(·), it holds that θ ≥ ν̌ν.

Greedy guarantee. Different works [DK11, BBKT17] have studied the performance of the

GREEDY algorithm [NWF78] for the problem of monotone set function maximization subject to

caridinality constraint (Section 2.3) when the objective is γ-weakly submodular. In our analysis,

we are going to make use of the following important result from [DK11].

Lemma 7.2.1. For a monotone normalized set function f : 2V → R+, with submodularity ratio
γ ∈ [0, 1] the GREEDY algorithm when run for l ∈ N+ steps, returns a set Sl of size l such that

f(Sl) ≥
(
1− e−γ l

k

)
f(OPT(k, V )),

where OPT(k, V ) is used to denote the optimal set of size k, i.e.,

OPT(k, V ) ∈ argmax
S⊆V,|S|≤k

f(S). (7.10)

7.3 Oblivious Greedy Algorithm and its Guarantees

We present our OBLIVIOUS-GREEDY algorithm in Algorithm 11. The algorithm requires a non-

negative monotone set function f : 2V → R+, and the ground set of items V . It constructs two

sets S0 and S1. The first set S0 is constructed via oblivious selection, i.e. �βτ� items with the

individually highest objective values are selected. Here, β ∈ R+ is an input parameter, that

together with τ , determines the size of S0 (|S0| = �βτ� ≤ k). We provide more information on

this parameter in the next section. The second set S1, of size k − |S0|, is obtained by running

the GREEDY algorithm on the remaining items V \ S0. Finally, the algorithm outputs the set

S = S0 ∪ S1 of size k that is robust against the worst-case removal of τ elements.
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Algorithm 11 OBLIVIOUS-GREEDY [BZC18]

Input: Set V , k, τ , β ∈ R+ and �βτ� ≤ k
Output: Set S ⊆ V such that |S| ≤ k

1: S0, S1 ← ∅
2: for i ← 0 to �βτ� do
3: v ← argmaxv∈V \S0

f({v})
4: S0 ← S0 ∪ {v}
5: S1 ← GREEDY(k − |S0|, (V \ S0))
6: S ← S0 ∪ S1

7: return S

Intuitively, the role of S0 is to ensure robustness, as its elements are selected independently of

each other and have high marginal values. On the other hand, the set S1 is obtained greedily and

it is near-optimal on the set V \ S0.

OBLIVIOUS-GREEDY is simpler than the submodular algorithms PRO-GREEDY (Sec. 6.2.1)

and OSU (Sec. 2.3). Both of these algorithms construct multiple sets (buckets) whose number

and size depend on the input parameters k and τ . In contrast, OBLIVIOUS-GREEDY always

constructs two sets, where the first set is obtained by the fast OBLIVIOUS selection.

For problem max|S|≤k f(S) and the weakly submodular objective f(·), the GREEDY algorithm

achieves a constant factor approximation (Lemma 7.2.1), while OBLIVIOUS selection achieves

(γ/k)-approximation [KED+17]. For the harder Problem (7.1), GREEDY can fail arbitrarily

badly (see Section 6.1.1). Interestingly enough, the combination of these two algorithms reflected

in OBLIVIOUS-GREEDY leads to a constant factor approximation for Problem (7.1).

7.3.1 Approximation guarantee

The quantity of interest in this section is the remaining utility after the adversarial removal

of elements f(S \ E∗
S), where S is the set of size k returned by OBLIVIOUS-GREEDY, and

E∗
S is the set of size τ chosen by the adversary, i.e., E∗

S ∈ argminE⊂S,|E|≤τ f(S \ E). Let

OPT(k − τ, V \ E∗
S) denote the optimal solution (Eq. 7.10), of size k − τ , when the ground set

is V \ E∗
S . The goal in this section is to compare f(S \ E∗

S) to f(OPT(k − τ, V \ E∗
S)).

1 All

the omitted proofs from this section can be found in Appendix 7.A.2.

Intermediate results. Before stating our main result, we provide three lower bounds on

f(S \ E∗
S). For the returned set S = S0 ∪ S1, we let E0 denote elements removed from S0, i.e.,

E0 := E∗
S ∩ S0 and similarly E1 := E∗

S ∩ S1. The result of the first lemma is borrowed from the

previous chapter (the proof can be found in Appendix 6.A.4), and states that f(S \E∗
S) is at least

some constant fraction of the utility of the elements obtained greedily in the second stage.

1We have f(OPT(k − τ, V \X)) ≥ f(OPT \E∗
OPT) (from Lemma 6.A.8), where OPT is the optimal solution

to Problem (7.1) and X ⊂ V is any set of size τ . The main result from the previous chapter also holds if we replace

f(OPT \ E∗
OPT) with its upper bound f(OPT(k − τ, V \ E∗

S)).
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Lemma 7.3.1. For any f(·) (not necessarily submodular), let μ ∈ [0, 1] be a constant such that
f(E1 | (S \ E∗

S)) = μf(S1) holds. Then, f(S \ E∗
S) ≥ (1− μ)f(S1).

The next lemma applies to any monotone set function with bipartite subadditivity ratio θ.

Lemma 7.3.2. Let θ ∈ [0, 1] be a bipartite subadditivity ratio defined in Eq. (7.9). Then

f(S \ E∗
S) ≥ θf(OPT(k − τ, V \ E∗

S))− (1− e−
k−|S0|
k−τ )−1f(S1).

In other words, if f(S1) is small compared to the utility of the optimal solution, then f(S \E∗
S)

is at least a constant factor away from the optimal solution. Next, we present our key lemma that

further relates f(S \ E∗
S) to the utility of the set S1 with no deletions.

Lemma 7.3.3. Let β be a constant such that |S0| = �βτ�, |S0| ≤ k, and let ν̌, α̌ ∈ [0, 1] be a
superadditivity ratio and generalized inverse curvature (Eq. (7.8) and Eq. (7.6), respectively).
Finally, let μ be a constant defined as in Lemma 7.3.1. Then,

f(S \ E∗
S) ≥ (β − 1)ν̌(1− α̌)μf(S1).

Proof. We have:

f(S \ E∗
S) ≥ f(S0 \ E0)

≥ ν̌
∑

ei∈S0\E0

f({ei}) (7.11)

≥ |S0 \ E0|
|E1| ν̌

∑
ei∈E1

f({ei}) (7.12)

≥ (β − 1)τ

τ
ν̌

∑
ei∈E1

f({ei}) (7.13)

≥ (β − 1)ν̌(1− α̌)

×
|E1|∑
i=1

f
(
{ei}|(S \ E∗

S) ∪ E
(i−1)
1

)
(7.14)

= (β − 1)ν̌(1− α̌)f (E1|(S \ E∗
S)) (7.15)

= (β − 1)ν̌(1− α̌)μf(S1). (7.16)

Eq. (7.11) follows by the superadditivity. Eq. (7.12) follows from the way S0 is constructed,

i.e. via OBLIVIOUS selection that ensures f({i}) ≥ f({j}) for every i ∈ S0 \ E0 and j ∈ E1.

Eq. (7.13) follows from |S0 \ E0| = �βτ� − |E0| ≥ βτ − τ = (β − 1)τ , and |E1| ≤ τ .

To prove Eq. (7.14), let E1 = {e1, · · · e|E1|}, and let E
(i−1)
1 ⊆ E1 denote the set {e1, · · · , ei−1}.
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Figure 7.1: Approximation guarantee obtained in Remark 2. The green cross represents the

approximation guarantee when f is submodular (γ = θ = 1).

Also, let E
(0)
1 = ∅. Eq. (7.14) then follows from

f({ei}) ≥ (1− α̌)f
(
{ei}|(S \ E∗

S) ∪ E
(i−1)
1

)
,

which in turns follows from (7.6) by setting S = {ei} and Ω = (S \ E∗
S) ∪ E

(i−1)
1 .

Finally, Eq. (7.15) follows from f (E1|(S \ E∗
S)) =

∑
ei∈E1

f
(
{ei}|(S \ E∗

S) ∪ E
(i−1)
1

)
(telescoping sum) and Eq. (7.16) follows from the definition of μ.

Main result. We obtain the main result by examining the maximum of the obtained lower

bounds in Lemma 7.3.1, 7.3.2 and 7.3.3. Note, that all three obtained lower bounds depend

on f(S1). In Lemma 7.3.2, we benefit from f(S1) being small while the opposite is true for

Lemma 7.3.1 and 7.3.3 (both bounds are increasing in f(S1)). By examining the latter two, we

observe that in Lemma 7.3.1 we benefit from μ being small (i.e. the utility that we lose due to E1

is small compared to the utility of the whole set S1) while the opposite is true for Lemma 7.3.3.

By carefully balancing between these cases (see Appendix 7.A.2) we arrive at our main result.

Theorem 7.3.1. Let f : 2V → R+ be a normalized, monotone set function with submodu-
larity ratio γ, bipartite subadditivity ratio θ, inverse curvature α̌ and superadditivity ratio ν̌,
every parameter in [0, 1]. For a given budget k and τ = �ck� for some fixed c ∈ (0, 1), the
OBLIVIOUS-GREEDY algorithm with β ∈ (

1, 1c
)

returns a set S such that as k → ∞ we have

f(S \ E∗
S) ≥

θP
(
1− e−γ 1−βc

1−c

)
1 + P

(
1− e−γ 1−βc

1−c

)f(OPT(k − τ, V \ E∗
S)),

where P is used to denote (β−1)ν̌(1−α̌)
1+(β−1)ν̌(1−α̌) .
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Remark 2. Consider f(·) from Theorem 7.3.1 with ν̌ ∈ (0, 1] and α̌ ∈ [0, 1). When τ = o
(

k
β

)
and β ≥ log k, as k → ∞ we have:

f(S \ E∗
S) ≥

(
θ
1− e−γ

2− e−γ
+ o(1)

)
f(OPT(k − τ, V \ E∗

S)).

Interpretation. In Theorem 7.3.1 we obtain the first asymptotic constant factor approximation

in the linear regime, i.e., when the number of removals is τ = �ck� for some fixed constant

c ∈ (0, 1). Our result holds in the non-submodular setting and depends on the few different

parameters that further characterize our objective function. In the subsequent sections, we provide

bounds for these parameters in the case of specific classes of set functions.

Additionally, when f is submodular, all the parameters in the obtained bound are fixed (α̌ = 0

and γ = θ = 1 due to submodularity) except the superadditivity ratio ν̌ which can take any value

in [0, 1]. The approximation factor improves for greater ν̌, i.e. the closer the function is to being

superadditive. On the other hand, if f is supermodular then ν̌ = 1 while α̌, θ, γ are in [0, 1], and

the approximation factor improves for larger θ and γ, and smaller α̌.

From Remark 2, when f is submodular (and assuming the conditions of Remark 2 hold),

OBLIVIOUS-GREEDY achieves an asymptotic approximation factor of at least 0.387. In such

case, the obtained approximation factor matches the one obtained in [BMSC17b, OSU16]. More

importantly, the obtained result also holds for a wider range of non-submodular functions. In

Figure 7.1 we show how the asymptotic approximation factor changes as a function of γ and θ.

We also obtain an alternative formulation of our main result, which we present here.

Corollary 7.3.1. Consider the setting from Theorem 7.3.1 and let P := (β−1)ν̌ν
1+(β−1)ν̌(1−ν) . We have

f(S \ E∗
S) ≥

θ2P
(
1− e−γ 1−βc

1−c

)
1 + θP

(
1− e−γ 1−βc

1−c

)f(OPT(k − τ, V \ E∗
S)).

Additionally, consider f(·) with ν̌, ν ∈ (0, 1]. When τ = o
(

k
β

)
and β ≥ log k, as k → ∞, we

have that f(S \ E∗
S) is at least(

θ2(1− e−γ)

1 + θ(1− e−γ)
+ o(1)

)
f(OPT(k − τ, V \ E∗

S)).

The key observation is that the approximation factor depends on ν instead of inverse curvature

α̌. The asymptotic approximation ratio is slightly worse here compared to the one obtained in

Theorem 7.3.1. However, depending on the considered application, it might be significantly

harder to provide bounds for the inverse curvature than bipartite subadditivty ratio, and hence in

such cases, this formulation might be more suitable.
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7.4 Applications

In this section, we consider two important real-world applications where deletion robust opti-

mization is of interest. We show that the parameters used in the statement of our main theoretical

result can be explicitly characterized, which implies that the obtained guarantees are applicable.

7.4.1 Robust Support Selection

We first consider the recent results that connect submodularity with concavity [EKDN16,

KED+17]. In order to obtain bounds for robust support selection, we make use of the theo-

retical bounds obtained for OBLIVIOUS-GREEDY in Corollary 7.3.1.

Given a differentiable concave function l : X → R, where X ⊆ R
p is a convex set, and k ≤ p,

the support selection problem is: max‖x‖0≤k l(x). We let supp(x) = {i : xi 	= 0} and consider

the normalized monotone set function from [EKDN16]: f(S) := maxsupp(x)⊆S,x∈X l(x)− l(0).

Let Tl(x,y) := l(y) − l(x) − 〈∇l(x),y − x〉. An important result obtained in [EKDN16]

can be rephrased as follows: if l(·) is L-smooth and m-strongly concave then

−m

2
‖y − x‖22 ≥ Tl(x,y) ≥ −L

2
‖y − x‖22,

holds for all x,y ∈ dom(l), and f ’s submodularity ratio γ is lower bounded2 by m
L . Subsequently,

in [KED+17] it is shown that θ can also be lower bounded by the same ratio m
L .

In this chapter, we consider the robust support selection problem, that is, finding a set of

features S ⊆ [d] of size k that is robust against the deletion of limited number of features. More

formally, the goal is to maximize the following objective over all S ⊆ [d]:

min
|ES |≤τ,ES⊆S

max
supp(x)⊆S\ES ,x∈X

l(x)− l(0).

By inspecting the bound obtained in Corollary 7.3.1, it remains to bound the (super/sub)additive

ratio ν and ν̌. The first bound follows by combining the result γ ≥ m
L with Proposition 7.2.1:

ν ≥ γ ≥ m
L . To prove the second bound, we make use of the following result that complements

the one from [EKDN16] and shows the novel connection between the strong concavity and weak

supermodularity.

Proposition 7.4.1. The supermodularity ratio γ̌ of the considered objective f(·) can be lower
bounded by m

L .

The second bound follows by the result of this proposition and Proposition 7.2.1: ν̌ ≥ γ̌ ≥ m
L .

2In fact, as shown in [EKDN16], a similar result holds in the case when l(·) is restricted smooth and restricted

strongly concave on the domain of all pairs of k-sparse vectors that differ in at most k entries. All our result can be

easily adapted to hold in such a setting as well.
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7.4.2 Variance Reduction in Robust Batch Bayesian Optimization

In batch Bayesian optimization, the goal is to optimize an unknown non-convex function from

costly concurrent function evaluations [DKB14, GDHL16, AJF12]. Most often, the concur-

rent evaluations correspond to running an expensive batch of experiments. In the case where

experiments can fail, it is beneficial to select a set of experiments in a robust way.

Different acquisition (i.e. auxiliary) functions have been proposed to evaluate the utility of

candidate points for the next evaluations of the unknown function (see Section 2.2). In Chapter 3,

we used the variance reduction objective as the part of our acquisition function – the unknown

function is evaluated at the points that maximally reduce variance of the posterior distribution

over the given set of points that represent potential maximizers. We now recall the problem setup.

Setup. Let f(x) be an unknown function defined over a finite domain X = {x1, · · · ,xn},

where xi ∈ R
p. Once we evaluate the function at some point xi ∈ X , we receive a noisy

observation yi = f(xi) + z, where z ∼ N (0, σ2). In Bayesian optimization, f is modeled

as a sample from a Gaussian process. We use a Gaussian process with zero mean and kernel

function k(x,x′), i.e. f ∼ GP(0, k(x,x′)). Let S = {e1, · · · , e|S|} ⊆ [n] denote the set of

points, and XS := [xe1 , · · · ,xe|S| ] ∈ R
|S|×d and yS := [y1, · · · , y|S|] denote the corresponding

data matrix and observations, respectively. The posterior distribution of f given the points XS

and observations yS is again a GP, with the posterior variance given by:

σ2
x|S = k(x,x)− k(x,XS)

(
k(XS ,XS) + σ2I |S|

)−1
k(XS ,x).

For a given set of potential maximizers M ⊆ [n], the variance reduction objective is defined as:

FM (S) :=
∑

x∈XM

σ2
x − σ2

x|S , (7.17)

where σ2
x = k(x,x). We prove that this objective is not submodular in general (see Ap-

pendix 7.A.3).

Finally, our goal is to find a set of points S of size k that maximizes

min
|ES |≤τ,ES⊆S

∑
x∈XM

σ2
x − σ2

x|S\ES
.

Proposition 7.4.2. Assume the kernel function is such that k(xi,xi) ≤ kmax, for every i ∈ [n].
The objective function in (7.17) is normalized and monotone, and both its curvature α and inverse
curvature α̌ can be upper bounded by kmax

σ2+kmax
.

We can combine this result with Proposition 7.2.1, to obtain ν ≥ γ ≥ σ2

σ2+kmax
and ν̌ ≥ γ̌ ≥

σ2

σ2+kmax
. Also, we have θ ≥ σ4

(σ2+kmax)2
(Remark 1). Consequently, all the parameters from

Theorem 7.3.1 are explicitly characterized.
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7.5 Experimental Evaluation

Optimization performance. For a returned set S, we measure the performance in terms of

minE⊆S,|E|≤τ f(S \ E). Note that f(S \ E) is a submodular function in E. Finding the

minimizer E s.t. |E| ≤ τ is NP-hard even to approximate [SF11]. We rely on the following

methods in order to find E of size τ that degrades the solution as much as possible:

– Greedy adversaries: (i) Greedy Min – iteratively removes elements to reduce the objective

value f(S \ E) as much as possible, and (ii) Greedy Max – iteratively adds elements from S to

maximize the objective f(E).

– Random Greedy adversaries:3 In order to introduce randomness in the removal process we

consider (iii) Random Greedy Min – iteratively selects a random element from the top τ elements

whose marginal gains are the highest in terms of reducing the objective value f(S \ E) and

(iv) Stochastic Greedy Min – iteratively selects an element, from a random set R ⊆ V , with the

highest marginal gain in terms of reducing f(S \E). At every step, R is obtained by subsampling

(|S|/τ) log(1/ε) elements from S.
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Figure 7.2: Comparison of the algorithms on the linear regression task.

3The random adversaries are inspired by the works of [BFNS14] and [MBK+15].
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Figure 7.3: Logistic regression task with synthetic dataset.

The minimum objective value f(S \E) among all obtained sets E is reported. We observed

that while Greedy Max is effective in degrading the solution S obtained by GREEDY, it has little

effect on the solutions produced by the robust algorithms.

7.5.1 Robust Support Selection

Linear Regression. Our setup is similar to the one in [KED+17]. Each row of the design matrix

X ∈ R
n×p is generated by an autoregressive process (t ∈ [p]),

Xi,t+1 =
√
1− α2Xi,t + αεi,t, (7.18)

where εi,t is i.i.d. standard Gaussian with variance α2 = 0.5. We use n = 800 training data

points and p = 1000. An additional 2400 points are used for testing. We generate a 100-sparse

regression vector by selecting random entries of ω and set them

ωs = (−1)Bern(1/2)

(
5

√
log d

n
+ δs

)
,

where δs ∼ N (0, 1). The target is given by y = Xω + z, where ∀i ∈ [n], zi ∼ N (0, 5).
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Figure 7.4: Logistic regression with MNIST dataset.

We compare the performance of OBLIVIOUS-GREEDY against:

• robust algorithms (in blue) such as OBLIVIOUS, PRO-GREEDY and OSU [OSU16], and

• greedy-type algorithms (in red) such as GREEDY, STOCHASTIC-GREEDY [MBK+15],

RANDOM-GREEDY [BFNS14] and ORTHOGONAL-MATCHING-PURSUIT.

We require β > 1 for our asymptotic results to hold, but we found out that in practice (small k

regime) β ≤ 1 usually gives the best performance. We use OBLIVIOUS-GREEDY with β = 1

unless stated otherwise.

The results are shown in Fig. 7.2. Since PRO-GREEDY and OSU only make sense in the

regime where τ is relatively small, the plots show their performance only for feasible values of

k. It can be observed that OBLIVIOUS-GREEDY achieves the best performance among all the

methods in terms of both training error and test score. Also, the greedy-type algorithms become

less robust for larger values of τ .

Logistic Regression. We compare the performance of OBLIVIOUS-GREEDY against GREEDY

and OBLIVIOUS selection on both synthetic and real-world data.
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– Synthetic data: We generate a 100-sparse ω by letting ωs = (−1)Bern(1/2) × δs, with

δs ∼ Unif([−1, 1]). The design matrix X is generated as in (7.18), with α2 = 0.09. We set

p = 200, and use n = 600 points for training and additional 1800 points for testing. The label of

the i-th data point X(i,·) is set to 1 if 1/(1 + exp(X(i,·)β)) > 0.5 and 0 otherwise. The results

are shown in Fig. 7.3. We can observe that OBLIVIOUS-GREEDY outperforms other methods

both in terms of the achieved objective value and generalization error. We also note that the

performance of GREEDY decays significantly when τ increases.

– MNIST: We consider the 10-class logistic regression task on the MNIST [LBBH98] dataset.

In this experiment, we set β = 0.5 in OBLIVIOUS-GREEDY, and we sample 200 images for

each digit for the training phase and 100 images of each for testing. The results are shown in

Fig. 7.4. It can be observed that OBLIVIOUS-GREEDY has a distinctive advantage over GREEDY

and OBLIVIOUS, while when τ increases the performance of GREEDY decays significantly and

more robust OBLIVIOUS starts to outperform it.
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Figure 7.5: Comparison of the algorithms on the variance reduction task.
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7.5.2 Robust Batch Bayesian Optimization via Variance Reduction

Setup. We conducted the following synthetic experiment. A design matrix X of size 600× 20

is obtained via the autoregressive process from (7.18). The function values at these points are

generated from a GP with 3/2-Mátern kernel with both lengthscale and output variance set to 1.0.

The samples of this function are corrupted by Gaussian noise, σ2 = 1.0. Objective function used

is the variance reduction (Eq. (7.17)). Finally, half of the points randomly chosen are selected in

the set M , while the other half is used in the selection process. We use β = 0.5 in our algorithm.

Results. In Figure 7.5 (a), (b), (c), the performance of all three algorithms is shown when τ is

fixed to 50. Different figures correspond to different α values. We observe that when α = 0.1,

GREEDY outperforms OBLIVIOUS for most values of k, while OBLIVIOUS clearly outperforms

GREEDY when α = 0.2. For all presented values of α, OBLIVIOUS-GREEDY outperforms both

GREEDY and OBLIVIOUS selection. For larger values of α, the correlation between the points

becomes small and consequently so do the objective values. In such cases, all three algorithms

perform similarly. In Figure 7.5 (d), we show how the performance of all three algorithms

decreases as the number of removals increases. When the number of removals is small both

GREEDY and our algorithm perform similarly, while as the number of removals increases the

performance of GREEDY drops more rapidly.
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7.A Proofs

7.A.1 Proofs from Section 7.2

Proof of Proposition 7.2.1

We prove the following relations:

• ν ≥ γ, ν̌ ≥ γ̌:

By setting S = ∅ in both Eq. (7.3) and Eq. (7.4), we obtain ∀S ⊆ V :∑
i∈S

f({i}) ≥ γf(S), (7.19)

and

f(S) ≥ γ̌
∑
i∈S

f({i}). (7.20)

The result follows since, by definition of ν and ν̌, they are the largest scalars such that

Eq. (7.19) and Eq. (7.20) hold, respectively.

• γ ≥ 1− α̌, γ̌ ≥ 1− α:

Let S,Ω ⊆ V be two arbitrary disjoint sets. We arbitrarily order elements of sΩ =

{e1, · · · , e|Ω|} and we let Ωj−1 denote the first j − 1 elements of Ω. We also let Ω0 be an

empty set.

By the definition of α̌ (see Eq. (7.6)) we have:

|Ω|∑
j=1

f ({ej}|S) =
|Ω|∑
j=1

f ({ej}|S ∪ {ej} \ {ej})

≥
|Ω|∑
j=1

(1− α̌)f ({ej}|S ∪ {ej} \ {ej} ∪ Ωj−1)

= (1− α̌)f (Ω|S) , (7.21)

where the last equality is obtained via telescoping sums.

Similarly, by the definition of α (see Eq. (7.5)) we have:

(1− α)

|Ω|∑
j=1

f ({ej}|S) =
|Ω|∑
j=1

(1− α)f ({ej}|S ∪ {ej} \ {ej})

≤
|Ω|∑
j=1

f ({ej}|S ∪ {ej} \ {ej} ∪ Ωj−1)

= f (Ω|S) . (7.22)
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Because S and Ω are arbitrary disjoint sets, and both γ and γ̌ are the largest scalars such

that for all disjoint sets S,Ω ⊆ V the following holds
∑|Ω|

j=1 f({ej}|S) ≥ γf(Ω|S) and

γ̌
∑|Ω|

j=1 f ({ej}|S) ≤ f (Ω|S), it follows from Eq. (7.21) and Eq. (7.22), respectively, that

γ ≥ 1− α̌ and γ̌ ≥ 1− α.

Proof of Remark 1

Proof. Consider any set S ⊆ V , and A and B such that A ∪B = S, A ∩B = ∅. We have

f(A) + f(B)

f(S)
≥ ν̌

∑
i∈A f({i}) + ν̌

∑
i∈B f({i})

f(S)

=
ν̌
∑

i∈S f({i})
f(S)

≥ νν̌,

where the first and second inequality follow by the definition of ν and ν̌ (Eq. (7.7) and Eq. (7.8)),

respectively. By the definition (see Eq. (7.9)), θ is the largest scalar such that f(A) + f(B) ≥
θf(S) holds, hence, it follows θ ≥ νν̌.

7.A.2 Proofs of the Main Result (Section 7.3)

Proof of Lemma 7.3.2

Proof. We start by defining

S′
0 := OPT(k − τ, V \ E0) ∩ (S0 \ E0),

and X := OPT(k − τ, V \ E0) \ S′
0.

f(S0 \ E0) + f(OPT(k − τ, V \ S0)) ≥ f(S′
0) + f(X) (7.23)

≥ θf(OPT(k − τ, V \ E0)) (7.24)

≥ θf(OPT(k − τ, V \ E∗
S)), (7.25)

where (7.23) follows from monotonicity as S′
0 ⊆ (S0 \E0) and (V \ S0) ⊆ (V \E0). Eq. (7.24)

follows from the fact that OPT(k − τ, V \ E0) = S′
0 ∪X and the bipartite subadditive prop-

erty (7.9). The final equation follows from the definition of the optimal solution and the fact that

E∗
S = E0 ∪ E1.

By rearranging and noting that f(S \ E∗
S) ≥ f(S0 \ E0) due to (S0 \ E0) ⊆ (S \ E∗

S) and

monotonicity, we obtain

f(S \ E∗
S) ≥ θf(OPT(k − τ, V \ E∗

S))− f(OPT(k − τ, V \ S0)).
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Proof of Theorem 7.3.1

Before proving the theorem we recall the following auxiliary result that can be found in

Lemma 6.A.2:

Lemma 7.A.1. For any set function f , sets A,B, and constant α > 0, we have

max{αf(A), βf(B)− f(A)} ≥
(

α

1 + α

)
βf(B). (7.26)

Next, we prove the main theorem.

Proof. We consider two cases, when μ = 0 and μ 	= 0. When μ = 0, from Lemma 7.3.1 we

have

f(S \ E∗
S) ≥ f(S1) (7.27)

On the other hand, when μ 	= 0, by Lemma 7.3.1 and 7.3.3 we have

f(S \ E∗
S) ≥ max{(1− μ)f(S1), (β − 1)ν̌(1− α̌)μf(S1)}

≥ (β − 1)ν̌(1− α̌)

1 + (β − 1)ν̌(1− α̌)
f(S1). (7.28)

By denoting

P :=
(β − 1)ν̌(1− α̌)

1 + (β − 1)ν̌(1− α̌)

we observe that P ∈ (0, 1) once β > 1. Hence, by setting β > 1 and taking the minimum

between the two bounds in Eq. (7.28) and Eq. (7.27) we conclude that Eq. (7.28) holds for any

μ ∈ [0, 1].

By combining Eq. (7.28) with Lemma 7.2.1 we obtain

f(S \ E∗
S) ≥ P

(
1− e−γ

k−�βτ�
k−τ

)
f(OPT(k − τ, V \ S0)). (7.29)

By further combining this with Lemma 7.3.2 we have

f(S \ E∗
S) ≥ max{θf(OPT(k − τ, V \ E∗

S))− f(OPT(k − τ, V \ S0)), (7.30)

P

(
1− e−γ

k−�βτ�
k−τ

)
f(OPT(k − τ, V \ S0))}

≥ θ

P

(
1− e−γ

k−�βτ�
k−τ

)
1 + P

(
1− e−γ

k−�βτ�
k−τ

)f(OPT(k − τ, V \ E∗
S)) (7.31)

where the second inequality follows from Lemma 7.A.1.

149



Chapter 7. Adversarially Robust Maximization of Non-Submodular Objectives

By plugging in τ = �ck� we further obtain

f(S \ E∗
S) ≥ θ

P

(
1− e

−γ
k−β�ck�−1

(1−c)k

)
1 + P

(
1− e

−γ
k−β�ck�−1

(1−c)k

)f(OPT(k − τ, V \ E∗
S))

≥ θ

P

(
1− e−γ

1−βc− 1
k
−β

k
1−c

)

1 + P

(
1− e−γ

1−βc− 1
k
−β

k
1−c

)f(OPT(k − τ, V \ E∗
S))

k→∞−−−→
θP

(
1− e−γ 1−βc

1−c

)
1 + P

(
1− e−γ 1−βc

1−c

)f(OPT(k − τ, V \ E∗
S)).

It remains to set β. From the previous analysis we have β > 1. We note that β should be

chosen such that the following condition holds |S0| = �βτ� ≤ k. When τ = �ck� for c ∈ (0, 1)

and k → ∞ the condition β < 1
c suffices.

Finally, Remark 2 follows from Eq. (7.31) when τ ∈ o
(

k
β

)
and β ≥ log k (note that the

condition |S0| = �βτ� ≤ k is thus satisfied), as k → ∞, we have both
k−�βτ�
k−τ → 1 and

P = (β−1)ν̌(1−α̌)
1+(β−1)ν̌(1−α̌) → 1, when ν̌ ∈ (0, 1] and α̌ ∈ [0, 1).

Proof of Corollary 7.3.1

To prove this result we need the following two lemmas that can be thought of as the alternative to

Lemma 7.3.1 and 7.3.3.

Lemma 7.A.2. Let μ′ ∈ [0, 1] be a constant such that f(E1) = μ′f(S1) holds. Consider f(·)
with bipartite subadditivity ratio θ ∈ [0, 1] defined in Eq. (7.2.4). Then

f(S \ E∗
S) ≥ (θ − μ′)f(S1). (7.32)

Proof. By the definition of θ, f(S1 \ E1) + f(E1) ≥ θf(S1). Hence,

f(S \ E∗
S) ≥ f(S1 \ E1)

≥ θf(S1)− f(E1)

= (θ − μ′)f(S1).
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Lemma 7.A.3. Let β be a constant such that |S0| = �βτ� and |S0| ≤ k, and let ν̌, ν ∈ [0, 1] be
superadditivity and subadditivity ratio (Eq. (7.8) and Eq. (7.7), respectively). Finally, let μ′ be a
constant defined as in Lemma 7.A.2. Then,

f(S \ E∗
S) ≥ (β − 1)ν̌νμ′f(S1). (7.33)

Proof. The proof follows that of Lemma 7.3.3, with two modifications. In Eq. (7.34) we used

the subadditive property of f(·), and Eq. (7.35) follows by the definition of μ′.

f(S \ E∗
S) ≥ f(S0 \ E0)

≥ ν̌
∑

ei∈S0\E0

f({ei})

≥ |S0 \ E0|
|E1| ν̌

∑
ei∈E1

f({ei})

≥ (β − 1)τ

τ
ν̌

∑
ei∈E1

f({ei})

≥ (β − 1)ν̌νf (E1) (7.34)

= (β − 1)ν̌νμ′f(S1). (7.35)

Next we prove the main corollary. The proof follows the steps of the proof from Ap-

pendix 7.A.2, except that here we make use of Lemma 7.A.2 and 7.A.3.

Proof. We consider two cases, when μ′ = 0 and μ′ 	= 0. When μ′ = 0, from Lemma 7.A.2 we

have

f(S \ E∗
S) ≥ θf(S1).

On the other hand, when μ′ 	= 0, by Lemma 7.A.2 and 7.A.3 we have

f(S \ E∗
S) ≥ max{(θ − μ′)f(S1), (β − 1)ν̌νμ′f(S1)}

≥ θ
(β − 1)ν̌ν

1 + (β − 1)ν̌ν
f(S1). (7.36)

By denoting P := (β−1)ν̌ν
1+(β−1)ν̌ν and observing that P ∈ (0, 1) once β > 1, we conclude that

Eq. (7.36) holds for any μ′ ∈ [0, 1] once β > 1.

By combining Eq. (7.36) with Lemma 7.2.1 we obtain

f(S \ E∗
S) ≥ θP

(
1− e−γ

k−�βτ�
k−τ

)
f(OPT(k − τ, V \ S0)). (7.37)
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By further combining this with Lemma 7.3.2 we have

f(S \ E∗
S) ≥ max{θf(OPT(k − τ, V \ E∗

S))− f(OPT(k − τ, V \ S0)), (7.38)

θP

(
1− e−γ

k−�βτ�
k−τ

)
f(OPT(k − τ, V \ S0))}

≥
θ2P

(
1− e−γ

k−�βτ�
k−τ

)
1 + θP

(
1− e−γ

k−�βτ�
k−τ

)f(OPT(k − τ, V \ E∗
S)), (7.39)

where the second inequality follows from Lemma 7.A.1. By plugging in τ = �ck� in the last

equation and by letting k → ∞ we arrive at:

f(S \ E∗
S) ≥

θ2P
(
1− e−γ 1−βc

1−c

)
1 + θP

(
1− e−γ 1−βc

1−c

)f(OPT(k − τ, V \ E∗
S)).

Finally, from Eq. (7.39), when τ ∈ o
(

k
β

)
and β ≥ log k, as k → ∞, we have both

k−�βτ�
k−τ → 1

and P = (β−1)ν̌ν
1+(β−1)ν̌ν → 1 (when ν, ν̌ ∈ (0, 1]). It follows

f(S \ E∗
S)

k→∞−−−→ θ2(1− e−γ)

1 + θ(1− e−γ)
f(OPT(k − τ, V \ E∗

S)).

7.A.3 Proofs from Section 7.4

Proof of Proposition 7.4.1

Proof. The goal is to prove: γ̌ ≥ m
L . Let S ⊆ [d] and Ω ⊆ [d] be any two disjoint sets, and for

any set A ⊆ [d] let x(A) = argmaxsupp(x)⊆A,x∈X l(x). Moreover, for B ⊆ [d] let x
(A)
B denote

those coordinates of vector x(A) that correspond to the indices in B.

We proceed by upper bounding the denominator and lower bounding the numerator in (7.4).

By definition of x(S) and strong concavity of l(·),

l(x(S∪{i}))− l(x(S)) ≤ 〈∇l(x(S)),x(S∪{i}) − x(S)〉 − m

2

∥∥∥x(S∪{i}) − x(S)
∥∥∥2 (7.40)

≤ max
v:v(S∪{i})c=0

〈∇l(x(S)),v − x(S)〉 − m

2

∥∥∥v − x(S)
∥∥∥2 (7.41)

=
1

2m

∥∥∥∇l(x(S))i

∥∥∥2 , (7.42)
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where the last equality follows by plugging in the maximizer v = x(S) + 1
m∇l(x(S))i. Hence,

∑
i∈Ω

(
l(x(S∪{i}))− l(x(S))

)
≤

∑
i∈Ω

1

2m

∥∥∥∇l(x(S))i

∥∥∥2 = 1

2m

∥∥∥∇l(x(S))Ω

∥∥∥2 .
On the other hand, from the definition of x(S∪Ω) and due to smoothness of l(·) we have

l(x(S∪Ω))− l(x(S)) ≥ l(x(S) +
1

L
∇l(x(S))Ω)− l(x(S))

≥ 〈∇l(x(S)),
1

L
∇l(x(S))Ω〉 − L

2

∥∥∥∥ 1L∇l(x(S))Ω

∥∥∥∥2
=

1

2L

∥∥∥l(x(S))Ω

∥∥∥2 .
It follows that

l(x(S∪Ω))− l(x(S))∑
i∈Ω

(
l(x(S∪{i}))− l(x(S))

) ≥ m

L
, ∀ disjoint S,Ω ⊆ [d]

We finish the proof by noting that γ̌ is the largest constant for the above statement to hold.

Variance Reduction in GPs

Non-submodularity of Variance Reduction

The goal of this section is to show that the GP variance reduction objective is not submodular in

general. Consider the following PSD kernel matrix:

K =

⎡⎢⎣ 1
√
1− z2 0√

1− z2 1 z2

0 z2 1

⎤⎥⎦ .

We consider a single x = {3} (i.e. M is a singleton) that corresponds to the third data point.

The objective is as follows:

F (i|S) = σ2
{3}|S − σ2

{3}|S∪i.

The submodular property implies F ({1}) ≥ F ({1}|{2}). We have:

F ({1}) = σ2
{3} − σ2

{3}|{1}
= 1−K({3}, {3})−K({3}, {1})(K({1}, {1}) + σ2)−1K({1}, {3})
= 1− 1 + 0 = 0,
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F ({2}) = σ2
{3} − σ2

{3}|{2}
= 1−K({3}, {3})−K({3}, {2})(K({2}, {2}) + σ2)−1K({2}, {3})

= 1− (1− z2(1 + σ2)−1z2) =
z4

1 + σ2
,

and

F ({1, 2}) = σ2
{3} − σ2

{3}|{1,2}

= 1−K({3}, {3}) + [K({3}, {1}),K({3}, {2})]
[
1 + σ2,K({2}, {1})
K({1}, {2}), 1 + σ2

]−1 [
K({1}, {3})
K({2}, {3})

]

= 1− 1 + [0, z2]

[
1 + σ2,

√
1− z2√

1− z2, 1 + σ2

]−1 [
0

z2

]

=
z4(1 + σ2)

(1 + σ2)2 − (1− z2)
.

We obtain,

F ({1}|{2}) = F ({1, 2})− F ({2})

=
z4

(1 + σ2)− (1− z2)(1 + σ2)−1
− z4

1 + σ2
.

When z ∈ (0, 1), F ({1}|{2}) is strictly greater than 0, and hence greater than F ({1}). This is in

contradiction with the submodular property which implies F ({1}) ≥ F ({1}|{2}).

Proof of Proposition 7.4.2

Proof. We are interested in lower bounding the following ratios:
f({i}|S\{i}∪Ω)
f({i}|S\{i}) and

f({i}|S\{i})
f({i}|S\{i}∪Ω) .

Let kmax ∈ R+ be the largest variance, i.e. k(xi,xi) ≤ kmax for every i. Consider the case

when M is a singleton set:

f(i|S) = σ2
x|S − σ2

x|S∪i.

By using Ω = {i} in Eq. (7.43), we can rewrite f(i|S) as

f(i|S) = a2iB
−1
i ,

where ai, Bi ∈ R+, and are given by:

ai = k(x,xi)− k(x,XS)(k(XS ,XS) + σ2I)−1k(XS ,xi)

and

Bi = σ2 + k(xi,xi)− k(xi,XS)(k(XS ,XS) + σ2I)−1k(XS ,xi).
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By using the fact that k(xi,xi) ≤ kmax, for every i and S, we can upper bound Bi by σ2 + kmax

(note that k(xi,xi)− k(xi,XS)(k(XS ,XS) + σ2I)−1k(XS ,xi) ≥ 0 as variance cannot be

negative), and lower bound by σ2. It follows that for every i and S we have:

a2i
σ2 + kmax

≤ f(i|S) ≤ a2i
σ2

.

Therefore,

f({i}|S \ {i} ∪ Ω)

f({i}|S \ {i}) ≥ a2i /(σ
2 + kmax)

a2i /σ
2

=
σ2

σ2 + kmax
, ∀S,Ω ⊆ V, i ∈ S \ Ω,

f({i}|S \ {i})
f({i}|S \ {i} ∪ Ω)

≥ a2i /(σ
2 + kmax)

a2i /σ
2

=
σ2

σ2 + kmax
, ∀S,Ω ⊆ V, i ∈ S \ Ω.

It follows: (1− α) ≥ σ2

σ2+kmax
and (1− α̌) ≥ σ2

σ2+kmax
. The obtained result also holds for any set

M ⊆ [n].

Alternative GP variance reduction form

Here, the goal is to show that the variance reduction can be written as

F (Ω|S) = σ2
x|S − σ2

x|S∪Ω = aB−1aT , (7.43)

where a ∈ R
1×|Ω\S|
+ , B ∈ R

|Ω\S|×|Ω\S|
+ and are given by:

a := k(x,XΩ\S)− k(x,XS)(k(XS ,XS) + σ2I)−1k(XS ,XΩ\S),

and

B := σ2I + k(XΩ\S ,XΩ\S)− k(XΩ\S ,XS)(k(XS ,XS) + σ2I)−1k(XS ,XΩ\S).

This form is used in the proof in Appendix 7.A.3.

Proof. Recall the definition of the posterior variance:

σ2
x|S = k(x,x)− k(x,XS)

(
k(XS ,XS) + σ2I |S|

)−1
k(XS ,x).

We have

F (Ω|S) = σ2
x|S − σ2

x|S∪Ω

= k(x,XS∪Ω)
(
k(XS∪Ω,XS∪Ω) + σ2I |Ω∪S|

)−1
k(XS∪Ω,x)− k(x,XS)

× (
k(XS ,XS) + σ2I |S|

)−1
k(XS ,x)
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= [m1,m2]

[
A11,A12

A21,A22

]−1 [
mT

1

mT
2

]
−m1A

−1
11 m

T
1 ,

where we use the following notation:

m1 := k(x,XS),m2 := k(x,XΩ\S)

A11 := k(XS ,XS) + σ2I |S|,

A12 := k(XS ,XΩ\S),

A21 := k(XΩ\S , XS),

A22 := k(XΩ\S ,XΩ\S) + σ2I |Ω\S|.

By using the inverse formula [PP+08, Section 9.1.3] we obtain:

F (Ω|S) = [m1,m2]

[
A−1

11 +A−1
11 A12B

−1A21A
−1
11 , −A−1

11 A12B
−1

−B−1A21A
−1
11 , B−1

][
mT

1

mT
2

]
−m1A

−1
11 m

T
1 ,

where B := A22 −A21A
−1
11 A12.

Finally, we obtain:

F (Ω|S) = m1A
−1
11 m

T
1 +m1A

−1
11 A12B

−1A21A
−1
11 m

T
1 −m2B

−1A21A
−1
11 m

T
1

−m1A
−1
11 A12B

−1mT
2 +m2B

−1mT
2 −m1A

−1
11 m

T
1

= m1A
−1
11 A12B

−1(A21A
−1
11 m

T
1 −mT

2 )−m2B
−1(A21A

−1
11 m

T
1 −mT

2 )

= (m1A
−1
11 A12 −m2)B

−1(A21A
−1
11 m

T
1 −mT

2 )

= (m2 −m1A
−1
11 A12)B

−1(mT
2 −A21A

−1
11 m

T
1 ).

By setting

a := m2 −m1A
−1
11 A12

= k(x,XΩ\S)− k(x,XS)(k(XS ,XS) + σ2I)−1k(XS ,XΩ\S)

and

aT := mT
2 −A21A

−1
11 m

T
1

= k(XΩ\S ,x)− k(XΩ\S ,XS)(k(XS ,XS) + σ2I)−1k(XS ,x),

we have F (Ω|S) = aB−1aT , where

B = σ2I |Ω\S| + k(XΩ\S ,XΩ\S)− k(XΩ\S ,XS)(k(XS ,XS) + σ2I |S|)−1k(XS ,XΩ\S).
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8 Conclusions and Future Work

As we discussed in Chapter 1, sequential optimization of an unknown black-box function is a

central task in many interactive machine learning systems. In this dissertation, we have considered

Bayesian optimization (BO), a powerful technique for adaptive experimentation with a broad

range of applications, where the primary goal is the model-based optimization of the black-box

function via sequentially chosen decisions. We investigated a variety of settings in Bayesian

optimization that are of practical interest, with a particular focus on robust aspects such as

robustness to adversarial input perturbations, unknown and uncertain parameters, time-variations

in the objective, and more. In addition, we considered various other aspects of interest including

pointwise costs and heteroscedastic noise, multi-fidelity setting, and a setting where the goal is

to produce multiple sufficiently good solutions, i.e., the level-set estimation problem. The main

goal of studying these diverse aspects is to enhance both robust and adaptive decision making in

Bayesian optimization and related methods. Moreover, for many of the considered problems and

settings, we demonstrated that the standard Bayesian optimization algorithms are inadequate or

suffer from poor performance. We proposed novel algorithms for these problems that are based

on the powerful idea of confidence bounds which, despite the lack of knowledge of the actual

function, permit decision making based on the underlying model and the previous interactions.

A common feature of all the proposed algorithms in this dissertation is that they are designed

to exploit particular underlying structures that can be identified in many practical tasks and

corresponding decision spaces: They take advantage of the fact that in many situations adjacent

decisions result in similar outcomes and make use of the flexible Gaussian process models, and/or

they make use of the (near) submodular structure that can be found in many applications and

problems in machine learning. Furthermore, we obtained rigorous regret guarantees for our

proposed algorithms, and for most of the settings studied in this dissertation, we complemented

our results with algorithm-independent regret lower bounds.

Motivated by the batch setting in BO in which some of the selected experiments can fail, we

have also considered a subset selection problem in which some of the elements from the selected

set can be adversarially removed. We formalized this problem as a robust counterpart of the

classical problem of submodular set function maximization subject to cardinality constraints.
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We also investigated the case of non-submodular objectives, and we proposed efficient and

practical algorithms that achieve constant factor approximation guarantees and allow for a greater

number of removals in comparison to the previously known results. In numerous real-world

applications, we demonstrated the robust performance of our algorithms by showing that they

outperform other robust and non-robust selection strategies.

We continue by giving an overview of the main contributions of each chapter in this dissertation

as well as discussing some ideas for future research.

In Chapter 3, we proposed a novel algorithm for Bayesian optimization and level-set estimation

that is both versatile and efficient. We highlight the following aspects in which TRUVAR is

versatile:

• Unified optimization and level-set estimation: These are typically treated separately,

whereas TRUVAR and its theoretical guarantees are essentially identical in both cases.

• Actions with costs: TRUVAR naturally favors cost-effective points, as this is directly

incorporated into the acquisition function.

• Heteroscedastic noise: TRUVAR chooses points that effectively shrink the variance of

other points, thus directly taking advantage of situations in which some points are noisier

than others. It is unclear how to incorporate this into most existing algorithms.

• Multi-fidelity setting: We provided strong theoretical guarantees for the case that the

algorithm can choose both a point and a noise level, cf., Corollary 3.5.1.

Hence, TRUVAR directly handles several important phenomena that are non-trivial to incorporate

into most existing LSE and BO algorithms. Compared to other BO algorithms that perform a

lookahead (e.g., ES and MRS), TRUVAR avoids the computationally expensive task of averaging

over the posterior and/or measurements, and comes with rigorous theoretical guarantees.

Our obtained upper bounds on the simple regret for TRUVAR in the non-Bayesian GP opti-

mization setting nearly match existing lower bounds [SBC17] for the squared exponential kernel,

while in the case of the Matérn kernel the gaps are more significant. A direction for future

research is to resolve whether the presence of γ2T is necessary in our upper regret bound in

comparison to having γT only (cf. Section 3.6). If such an improvement in the upper bound is

possible, the new upper bound for the squared exponential kernel would match the lower bound

up to the factor of 2 in the exponent to log T . In the case of the Matérn kernel, this improvement

in the bound would lead to the removal of the present condition (i.e., 2ν − p(p+ 1) in Table 3.1),

and hence, the bound would be valid for any dimension p and Matérn parameter ν.

In Chapter 4, we introduced and studied a variant of GP optimization in which one requires

robustness to an adversarial input perturbation. We demonstrated the failures of existing algo-

rithms and proposed a new algorithm STABLEOPT that is based on two principles, optimism
in the face of uncertainty when it comes to deciding where to sample, and pessimism in the
face of uncertainty when it comes to anticipating the perturbation of the considered decision.
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In this setting, STABLEOPT is able to overcome the limitations of the standard algorithms and

find the robust maximizer. We provided rigorous regret bounds for STABLEOPT and comple-

mented them with algorithm-independent lower regret bounds. Moreover, we showed that our

framework naturally applies to several max-min optimization formulations including robust

Bayesian optimization, robust group identification, and settings in which robustness to unknown

or uncertain parameters is required. In our experiments that involve real-world applications

such as environmental monitoring, movie recommendation, and robotic manipulation tasks, we

demonstrated significant improvements over several natural baselines.

In the robust setting that we considered in Chapter 4, the returned point is the only one that

undergoes perturbation, while in some practical applications, even the points that we sample

(i.e., experiments that we implement and run) might be adversarially altered. This setting

can be formalized as follows: At time t, we decide to sample the function at xt, but the

observation that we receive instead corresponds to some other adversarially perturbed input

xt + δt. This setting is motivated by practical applications in which we cannot implement

the selected design exactly, but we can only do so while encountering some implementation

errors [BNT10b]. An interesting direction for future work is to investigate the appropriate regret

metrics for this setting and discover the best achievable performance for different adversarial

budgets. Another exciting direction for the future is to study the ε-stable optimization formulation

in the context of hyperparameter tuning (e.g., for deep neural networks). One might expect that

wide function maxima in hyperparameter space provide better generalization than narrow maxima,

but establishing this requires investigation. Similar considerations are an ongoing topic of debate

in understanding the parameter space rather than the hyperparmeter space, e.g., see [DPBB17].

In Chapter 5, we studied the GP optimization problem with time-varying rewards, taking a

new approach based on a GP that evolves according to a simple Markov model. We introduced

the R-GP-UCB and TV-GP-UCB algorithms, which, in contrast to previous algorithms, simulta-

neously trade off forgetting and remembering while also exploiting both spatial and temporal

correlations. Our regret bounds for these algorithms provide, to our knowledge, the first explicit

characterizations of the trade-off between the time horizon T and rate at which the function

varies ε. We also provided an algorithm-independent bound revealing that a linear dependence

on T for fixed ε is unavoidable. Despite the simplicity of our model, we saw that the algorithms

performed well on real world data sets that need not be matched to this model.

An immediate direction for future research is to determine to what extent the dependence on ε

can be improved in our upper and lower bounds. Moreover, one could move to the non-Bayesian

setting and consider classes of time-varying functions whose smoothness is dictated by an RKHS

norm. Furthermore, while our time-varying model is primarily suited to handling steady changes,

it could potentially be made even more effective by explicitly handling sudden changes, e.g., by a

combination of our techniques with those from previous works studying changepoint detection

[AM07, GOR09, STR10]. In addition, different works [GSA14, GKX+14] have addressed the

standard Bayesian optimization in the case of additional constraints that are unknown a priori

(i.e., constrained Bayesian optimization), and that are also modeled via Gaussian Processes.
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In this setting, both the unknown objective and constraints can be (independently) evaluated. A

natural extension would be to study the setup in which both constraints and objective vary with

time. The goal would be to model these changes and to extend our algorithms, TV-GP-UCB

and R-GP-UCB, to incorporate such information. Finally, we observed in our experiments (in

Section 5.4) that R-GP-UCB is computationally more efficient while the gradual forgetting of

TV-GP-UCB performs favorably compared to the sharp resetting of R-GP-UCB. An immediate

direction is to consider new algorithmic ideas that would combine these two approaches and

achieve best of both worlds, e.g., a sliding window (of fixed size) when it comes to which points

to keep (instead of sharp resetting) and gradual forgetting inside this window.

Motivated by settings in which our decisions can fail, but we have no prior information on

how failures occur, we have considered the problem of deciding on a robust set of decisions that

maximize some objective of interest. In Chapter 6, we formalized this problem as a problem of

submodular maximization in the case some number of the selected elements can be adversarially

removed. We provided a new Partitioned Robust (PRO) submodular algorithm attaining a

constant-factor approximation guarantee for general τ = o(k), thus resolving an open problem

posed in [OSU16]. Our algorithm uses a novel partitioning structure with partitions consisting of

buckets with exponentially decreasing size, thus providing a “robust part” of size O(τpoly log τ).

We considered applications such as robust influence maximization and data summarization and

proved the first robust guarantees for the corresponding objectives. In a variety of numerical

experiments, we demonstrated the robust performance of PRO by showing that it outperforms

other robust and non-robust algorithms. In addition, in Chapter 7, we presented a practical

algorithm OBLIVIOUS-GREEDY that achieves a constant-factor approximation guarantee for

the robust maximization of monotone non-submodular objectives. The theoretical guarantees

obtained hold in the linear regime, that is, for general τ = �ck� for some c ∈ (0, 1). We also

obtained the first robust guarantees for the support selection and GP variance reduction objectives.

In various experiments, we demonstrated the robust performance of OBLIVIOUS-GREEDY by

showing that it outperforms both OBLIVIOUS selection and GREEDY, and hence achieves the

best of both worlds.

An immediate direction for future work is to understand whether the best-known approximation

ratio of 0.387 can be obtained in the linear regime for general submodular objectives (in the

case of fixed memory size k). More generally, the best possible polynomial-time approximation

guarantee for this problem is not known for any non-trivial adversarial budget. Moreover, an

interesting research direction is to go beyond the simple cardinality constraints and to investigate

other types of constraints that are typically studied in the non-robust submodular maximization,

e.g., the more general case of matroid constraints [CCPV07]. Furthermore, we have only

considered monotone set functions in this dissertation; hence, an interesting direction is to study

the same type of robust problem formulations in the case of non-monotone objectives [FMV11].

In Section 7.4.1, we considered the robust feature/support selection problem, where we assumed

that the continuous loss function is (restricted) strongly convex and smooth. A potential direction

for future work is to consider practical and theoretical approaches for robust feature selection
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in the case of other more complex and non-convex loss functions. An interesting direction

to investigate is whether the combination of such robust selection strategies and adversarial

training [GSS15] can potentially result in neural network models that are robust to �0-norm

attacks [CW17] (i.e., missing features in the test data). When it comes to other applications, it

would be interesting to investigate if the methods developed in Chapter 6 and 7, can be used to

provide more robust interpretations of machine learning models [RSG16, KL17]. Providing both

robust and human interpretable set of features that are responsible for the model’s prediction can

be of great importance in real-world scenarios and decision supporting systems (e.g., in medical

domains) where the expert might find some number of the returned features (i.e., explanations or

symptoms) to be irrelevant.
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