
Robust Submodular Maximization:
A Non-Uniform Partitioning Approach

Ilija Bogunovic 1 Slobodan Mitrović 2 Jonathan Scarlett 1 Volkan Cevher 1

Abstract
We study the problem of maximizing a monotone
submodular function subject to a cardinality con-
straint k, with the added twist that a number of
items τ from the returned set may be removed.
We focus on the worst-case setting considered in
(Orlin et al., 2016), in which a constant-factor ap-
proximation guarantee was given for τ = o(

√
k).

In this paper, we solve a key open problem
raised therein, presenting a new Partitioned Ro-
bust (PRO) submodular maximization algorithm
that achieves the same guarantee for more gen-
eral τ = o(k). Our algorithm constructs par-
titions consisting of buckets with exponentially
increasing sizes, and applies standard submodu-
lar optimization subroutines on the buckets in or-
der to construct the robust solution. We numer-
ically demonstrate the performance of PRO in
data summarization and influence maximization,
demonstrating gains over both the greedy algo-
rithm and the algorithm of (Orlin et al., 2016).

1. Introduction
Discrete optimization problems arise frequently in machine
learning, and are often NP-hard even to approximate. In the
case of a set function exhibiting submodularity, one can ef-
ficiently perform maximization subject to cardinality con-
straints with a

(
1− 1

e

)
-factor approximation guarantee. Ap-

plications include influence maximization (Kempe et al.,
2003), document summarization (Lin & Bilmes, 2011),
sensor placement (Krause & Guestrin, 2007), and active
learning (Krause & Golovin, 2012), just to name a few.

1LIONS, EPFL, Switzerland 2LTHC, EPFL, Switzerland.
Correspondence to: Ilija Bogunovic <ilija.bogunovic@epfl.ch>,
Slobodan Mitrović <slobodan.mitrovic@epfl.ch>, Jonathan
Scarlett <jonathan.scarlett@epfl.ch>, Volkan Cevher
<volkan.cevher@epfl.ch>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

In many applications of interest, one requires robustness in
the solution set returned by the algorithm, in the sense that
the objective value degrades as little as possible when some
elements of the set are removed. For instance, (i) in influ-
ence maximization problems, a subset of the chosen users
may decide not to spread the word about a product; (ii)
in summarization problems, a user may choose to remove
some items from the summary due to their personal prefer-
ences; (iii) in the problem of sensor placement for outbreak
detection, some of the sensors might fail.

In situations where one does not have a reasonable prior
distribution on the elements removed, or where one re-
quires robustness guarantees with a high level of certainty,
protecting against worst-case removals becomes important.
This setting results in the robust submodular function max-
imization problem, in which we seek to return a set of car-
dinality k that is robust with respect to the worst-case re-
moval of τ elements.

The robust problem formulation was first introduced in
(Krause et al., 2008), and was further studied in (Orlin
et al., 2016). In fact, (Krause et al., 2008) considers a more
general formulation where a constant-factor approximation
guarantee is impossible in general, but shows that one can
match the optimal (robust) objective value for a given set
size at the cost of returning a set whose size is larger by a
logarithmic factor. In contrast, (Orlin et al., 2016) designs
an algorithm that obtains the first constant-factor approxi-
mation guarantee to the above problem when τ = o(

√
k).

A key difference between the two frameworks is that the
algorithm complexity is exponential in τ in (Krause et al.,
2008), whereas the algorithm of (Orlin et al., 2016) runs in
polynomial time.

Contributions. In this paper, we solve a key open problem
posed in (Orlin et al., 2016), namely, whether a constant-
factor approximation guarantee is possible for general τ =
o(k), as opposed to only τ = o(

√
k). We answer this ques-

tion in the affirmative, providing a new Partitioned Robust
(PRO) submodular maximization algorithm that attains a
constant-factor approximation guarantee; see Table 1 for
comparison of different algorithms for robust monotone
submodular optimization with a cardinality constraint.

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

Algorithm Max. Robustness Cardinality Oracle Evals. Approx.

SATURATE (KRAUSE ET AL., 2008) Arbitrary k(1 + Θ(log(τk log n))) exponential in τ 1.0
OSU (ORLIN ET AL., 2016) o(

√
k) k O(nk) 0.387

PRO-GREEDY (OURS) o(k) k O(nk) 0.387

Table 1. Algorithms for robust monotone submodular optimization with a cardinality constraint. The proposed algorithm is efficient and
allows for greater robustness.

Achieving this result requires novelty both in the algorithm
and its mathematical analysis: While our algorithm bears
some similarity to that of (Orlin et al., 2016), it uses a novel
structure in which the constructed set is arranged into par-
titions consisting of buckets whose sizes increase exponen-
tially with the partition index. A key step in our analysis
provides a recursive relationship between the objective val-
ues attained by buckets appearing in adjacent partitions.

In addition to the above contributions, we provide the first
empirical study beyond what is demonstrated for τ = 1
in (Krause et al., 2008). We demonstrate several scenarios
in which our algorithm outperforms both the greedy algo-
rithm and the algorithm of (Orlin et al., 2016).

2. Problem Statement
Let V be a ground set with cardinality |V | = n, and let f :
2V → R≥0 be a set function defined on V . The function f
is said to be submodular if for any sets X ⊆ Y ⊆ V and
any element e ∈ V \ Y , it holds that

f(X ∪ {e})− f(X) ≥ f(Y ∪ {e})− f(Y).

We use the following notation to denote the marginal gain
in the function value due to adding the elements of a set Y
to the set X:

f(Y |X) := f(X ∪ Y)− f(X).

In the case that Y is a singleton of the form {e}, we adopt
the shorthand f(e|X). We say that f is monotone if for any
sets X ⊆ Y ⊆ V we have f(X) ≤ f(Y), and normalized
if f(∅) = 0.

The problem of maximizing a normalized monotone sub-
modular function subject to a cardinality constraint, i.e.,

max
S⊆V,|S|≤k

f(S), (1)

has been studied extensively. A celebrated result
of (Nemhauser et al., 1978) shows that a simple greedy
algorithm that starts with an empty set and then itera-
tively adds elements with highest marginal gain provides
a (1− 1/e)-approximation.

S f(S) mins∈S f(S \ s)
∅ 0 0
{s1} n 0
{s2} ε 0
{s3} n− 1 0
{s1, s2} n+ ε ε
{s1, s3} n n− 1
{s2, s3} n ε

Table 2. Function f used to demonstrate that GREEDY can per-
form arbitrarily badly.

In this paper, we consider the following robust version of
(1), introduced in (Krause et al., 2008):

max
S⊆V,|S|≤k

min
Z⊆S,|Z|≤τ

f(S \ Z) (2)

We refer to τ as the robustness parameter, representing the
size of the subset Z that is removed from the selected set
S. Our goal is to find a set S such that it is robust upon
the worst possible removal of τ elements, i.e., after the re-
moval, the objective value should remain as large as possi-
ble. For τ = 0, our problem reduces to Problem (1).

The greedy algorithm, which is near-optimal for Prob-
lem (1) can perform arbitrarily badly for Problem (2). As
an elementary example, let us fix ε ∈ [0, n− 1) and n ≥ 0,
and consider the non-negative monotone submodular func-
tion given in Table 2. For k = 2, the greedy algorithm se-
lects {s1, s2}. The set that maximizes mins∈S f(S\s) (i.e.,
τ = 1) is {s1, s3}. For this set, mins∈{s1,s2} f({s1, s2} \
s) = n − 1, while for the greedy set the robust objective
value is ε. As a result, the greedy algorithm can perform
arbitrarily worse.

In our experiments on real-world data sets (see Section 5),
we further explore the empirical behavior of the greedy so-
lution in the robust setting. Among other things, we ob-
serve that the greedy solution tends to be less robust when
the objective value largely depends on the first few ele-
ments selected by the greedy rule.

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

Related work. (Krause et al., 2008) introduces the follow-
ing generalization of (2):

max
S⊆V,|S|≤k

min
i∈{1,··· ,n}

fi(S), (3)

where fi are normalized monotone submodular functions.
The authors show that this problem is inapproximable in
general, but propose an algorithm SATURATE which, when
applied to (2), returns a set of size k(1+Θ(log(τk log n)))
whose robust objective is at least as good as the optimal
size-k set. SATURATE requires a number of function evalu-
ations that is exponential in τ , making it very expensive to
run even for small values. The work of (Powers et al., 2016)
considers the same problem for different types of submod-
ular constraints.

Recently, robust versions of submodular maximization
have been applied to influence maximization. In (He &
Kempe, 2016), the formulation (3) is used to optimize a
worst-case approximation ratio. The confidence interval
setting is considered in (Chen et al., 2016), where two runs
of the GREEDY algorithm (one pessimistic and one opti-
mistic) are used to optimize the same ratio. By leveraging
connections to continuous submodular optimization, (Staib
& Jegelka, 2017) studies a related continuous robust budget
allocation problem.

(Orlin et al., 2016) considers the formulation in (2), and
provides the first constant 0.387-factor approximation re-
sult, valid for τ = o(

√
k). The algorithm proposed therein,

which we refer to via the authors surnames as OSU, uses
the greedy algorithm (henceforth referred to as GREEDY)
as a sub-routine τ + 1 times. On each iteration, GREEDY is
applied on the elements that are not yet selected on previous
iterations, with these previously-selected elements ignored
in the objective function. In the first τ runs, each solution is
of size τ log k, while in the last run, the solution is of size
k−τ2 log k. The union of all the obtained disjoint solutions
leads to the final solution set.

3. Applications
In this section, we provide several examples of applica-
tions where the robustness of the solution is favorable. The
objective functions in these applications are non-negative,
monotone and submodular, and are used in our numerical
experiments in Section 5.

Robust influence maximization. The goal in the influence
maximization problem is to find a set of k nodes (i.e., a
targeted set) in a network that maximizes some measure
of influence. For example, this problem appears in viral
marketing, where companies wish to spread the word of a
new product by targeting the most influential individuals in
a social network. Due to poor incentives or dissatisfaction
with the product, for instance, some of the users from the

targeted set might make the decision not to spread the word
about the product.

For many of the existing diffusion models used in the liter-
ature (e.g., see (Kempe et al., 2003)), given the targeted set
S, the expected number of influenced nodes at the end of
the diffusion process is a monotone and submodular func-
tion of S (He & Kempe, 2016). For simplicity, we consider
a basic model in which all of the neighbors of the users in
S become influenced, as well as those in S itself.

More formally, we are given a graph G = (V,E), where V
stands for nodes and E are the edges. For a set S, letN (S)
denote all of its neighboring nodes. The goal is to solve the
robust dominating set problem, i.e., to find a set of nodes S
of size k that maximizes

min
|RS |≤τ,RS⊆S

|(S \RS) ∪N (S \RS)|, (4)

where RS ⊆ S represents the users that decide not to
spread the word. The non-robust version of this objective
function has previously been considered in several different
works, such as (Mirzasoleiman et al., 2015b) and (Norouzi-
Fard et al., 2016).

Robust personalized image summarization. In the per-
sonalized image summarization problem, a user has a col-
lection of images, and the goal is to find k images that are
representative of the collection.

After being presented with a solution, the user might decide
to remove a certain number of images from the representa-
tive set due to various reasons (e.g., bad lighting, motion
blur, etc.). Hence, our goal is to find a set of images that
remain good representatives of the collection even after the
removal of some number of them.

One popular way of finding a representative set in a massive
dataset is via exemplar based clustering, i.e., by minimizing
the sum of pairwise dissimilarities between the exemplars
S and the elements of the data set V . This problem can be
posed as a submodular maximization problem subject to a
cardinality constraint; cf., (Lucic et al., 2016).

Here, we are interested in solving the robust summarization
problem, i.e., we want to find a set of images S of size k
that maximizes

min
|RS |≤τ,RS⊆S

f({e0})− f((S \RS) ∪ {e0}), (5)

where e0 is a reference element and f(S) =
1
|V |
∑
v∈V mins∈S d(s, v) is the k-medoid loss func-

tion, and where d(s, v) measures the dissimilarity between
images s and v.

Further potential applications not covered here include ro-
bust sensor placement (Krause et al., 2008), robust protec-
tion of networks (Bogunovic & Krause, 2012), and robust
feature selection (Globerson & Roweis, 2006).

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

4. Algorithm and its Guarantees
4.1. The algorithm

Our algorithm, which we call the Partitioned Robust (PRO)
submodular maximization algorithm, is presented in Algo-
rithm 1. As the input, we require a non-negative monotone
submodular function f : 2V → R≥0, the ground set of el-
ements V , and an optimization subroutine A. The subrou-
tineA(k′, V ′) takes a cardinality constraint k′ and a ground
set of elements V ′. Below, we describe the properties of A
that are used to obtain approximation guarantees.

The output of the algorithm is a set S ⊆ V of size k that is
robust against the worst-case removal of τ elements. The
returned set consists of two sets S0 and S1, illustrated in
Figure 1. S1 is obtained by running the subroutine A on
V \ S0 (i.e., ignoring the elements already placed into S0),
and is of size k − |S0|.

We refer to the set S0 as the robust part of the solution set S.
It consists of dlog τe + 1 partitions, where every partition
i ∈ {0, · · · , dlog τe} consists of dτ/2ie buckets Bj , j ∈
{1, · · · , dτ/2ie}. In partition i, every bucket contains 2iη
elements, where η ∈ N+ is a parameter that is arbitrary
for now; we use η = log2 k in our asymptotic theory, but
our numerical studies indicate that even η = 1 works well
in practice. Each bucket Bj is created afresh by using the
subroutine A on V \ S0,prev, where S0,prev contains all
elements belonging to the previous buckets.

The following proposition bounds the cardinality of S0, and
is proved in the supplementary material.

Proposition 4.1 Fix k ≥ τ and η ∈ N+. The size of the
robust part S0 constructed in Algorithm 1 is

|S0| =

dlog τe∑
i=0

dτ/2ie2iη ≤ 3ητ(log k + 2).

This proposition reveals that the feasible values of τ (i.e.,
those with |S0| ≤ k) can be as high as O

(
k
ητ

)
. We will

later set η = O(log2 k), thus permitting all τ = o(k) up
to a few logarithmic factors. In contrast, we recall that the
algorithm OSU proposed in (Orlin et al., 2016) adopts a
simpler approach where a robust set is used consisting of
τ buckets of equal size τ log k, thereby only permitting the
scaling τ = o(

√
k).

We provide the following intuition as to why PRO succeeds
despite having a smaller size for S0 compared to the algo-
rithm given in (Orlin et al., 2016). First, by the design of
the partitions, there always exists a bucket in partition i that
at most 2i items are removed from. The bulk of our anal-
ysis is devoted to showing that the union of these buckets
yields a sufficiently high objective value. While the earlier

Algorithm 1 Partitioned Robust Submodular optimization
algorithm (PRO)

Require: Set V , k, τ , η ∈ N+, algorithm A
Ensure: Set S ⊆ V such that |S| ≤ k

1: S0, S1 ← ∅
2: for i← 0 to dlog τe do
3: for j ← 1 to dτ/2ie do
4: Bj ← A (2iη, (V \ S0))
5: S0 ← S0 ∪Bj
6: S1 ← A (k − |S0|, (V \ S0))
7: S ← S0 ∪ S1

8: return S

buckets have a smaller size, they also have a higher ob-
jective value per item due to diminishing returns, and our
analysis quantifies and balances this trade-off. Similarly,
our analysis quantifies the trade-off between how much the
adversary can remove from the (typically large) set S1 and
the robust part S0.

4.2. Subroutine and assumptions

PRO accepts a subroutine A as the input. We consider a
class of algorithms that satisfy the β-iterative property, de-
fined below. We assume that the algorithm outputs the final
set in some specific order (v1, . . . , vk), and we refer to vi
as the i-th output element.

Definition 4.2 Consider a normalized monotone submod-
ular set function f on a ground set V , and an algorithmA.
Given any set T ⊆ V and size k, suppose that A outputs
an ordered set (v1, . . . , vk) when applied to T , and define
Ai(T) = {v1, . . . , vi} for i ≤ k. We say that A satisfies
the β-iterative property if

f(Ai+1(T))− f(Ai(T)) ≥ 1

β
max
v∈T

f(v|Ai(T)). (6)

Intuitively, (6) states that in every iteration, the algorithm
adds an element whose marginal gain is at least a 1/β frac-
tion of the maximum marginal. This necessarily requires
that β ≥ 1.

Examples. Besides the classic greedy algorithm, which
satisfies (6) with β = 1, a good candidate for our
subroutine is THRESHOLDING-GREEDY (Badanidiyuru &
Vondrák, 2014), which satisfies the β-iterative property
with β = 1/(1− ε). This decreases the number of function
evaluations to O(n/ε log n/ε).

STOCHASTIC-GREEDY (Mirzasoleiman et al., 2015a) is
another potential subroutine candidate. While it is un-
clear whether this algorithm satisfies the β-iterative prop-
erty, it requires an even smaller number of function eval-

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

uations, namely, O(n log 1/ε). We will see in Sec-
tion 5 that PRO performs well empirically when used
with this subroutine. We henceforth refer to PRO used
along with its appropriate subroutine as PRO-GREEDY,
PRO-THRESHOLDING-GREEDY, and so on.

Properties. The following lemma generalizes a classical
property of the greedy algorithm (Nemhauser et al., 1978;
Krause & Golovin, 2012) to the class of algorithms satisfy-
ing the β-iterative property. Here and throughout the paper,
we use OPT(k, V) to denote the following optimal set for
non-robust maximization:

OPT(k, V) ∈ argmax
S⊆V,|S|=k

f(S),

Lemma 4.3 Consider a normalized monotone submodular
function f : 2V → R≥0 and an algorithm A(T), T ⊆ V ,
that satisfies the β-iterative property in (6). Let Al(T) de-
note the set returned by the algorithm A(T) after l itera-
tions. Then for all k, l ∈ N+

f(Al(T)) ≥
(

1− e−
l
βk

)
f(OPT(k, T)). (7)

We will also make use of the following property, which is
implied by the β-iterative property.

Proposition 4.4 Consider a submodular set function f :
2V → R≥0 and an algorithm A that satisfies the β-
iterative property for some β ≥ 1. Then, for any T ⊆ V
and element e ∈ V \ A(T), we have

f(e|A(T)) ≤ β f(A(T))

k
. (8)

Intuitively, (8) states that the marginal gain of any non-
selected element cannot be more than β times the average
objective value of the selected elements. This is one of the
rules used to define the β-nice class of algorithms in (Mir-
rokni & Zadimoghaddam, 2015); however, we note that in
general, neither the β-nice nor β-iterative classes are a sub-
set of one another.

4.3. Main result: Approximation guarantee

For the robust maximization problem, we let OPT(k, V, τ)
denote the optimal set:

OPT(k, V, τ) ∈ argmax
S⊆V,|S|=k

min
E⊆S,|E|≤τ

f(S \ E).

Moreover, for a set S, we let E∗S denote the minimizer

E∗S ∈ argmin
E⊆S,|E|≤τ

f(S \ E). (9)

With these definitions, the main theoretical result of this
paper is as follows.

S0

S1

!

! / 2

2

1

1η

2η

(! / 2)η

! η

k - |S0|
1

partitions

buckets

Figure 1. Illustration of the set S = S0 ∪ S1 returned by PRO.
The size of |S1| is k−|S0|, and the size of |S0| is given in Propo-
sition 4.1. Every partition in S0 contains the same number of
elements (up to rounding).

Theorem 4.5 Let f be a normalized monotone submodu-
lar function, and let A be a subroutine satisfying the β-
iterative property. For a given budget k and parameters
2 ≤ τ ≤ k

3η(log k+2) and η ≥ 4(log k + 1), PRO returns a
set S of size k such that

f(S \ E∗S) ≥
η

5β3dlog τe+η

(
1− e−

k−|S0|
β(k−τ)

)
1 + η

5β3dlog τe+η

(
1− e−

k−|S0|
β(k−τ)

)
× f(OPT(k, V, τ) \ E∗OPT(k,V,τ)), (10)

where E∗S and E∗OPT(k,V,τ) are defined as in (9).

In addition, if τ = o
(

k
η log k

)
and η ≥ log2 k, then we

have the following as k →∞:

f(S \ E∗S) ≥
(

1− e−1/β

2− e−1/β
+ o(1)

)
× f(OPT(k, V, τ) \ E∗OPT(k,V,τ)). (11)

In particular, PRO-GREEDY achieves an asymptotic
approximation factor of at least 0.387, and PRO-
THRESHOLDING-GREEDY with parameter ε achieves an
asymptotic approximation factor of at least 0.387(1− ε).

This result solves an open problem raised in (Orlin et al.,
2016), namely, whether a constant-factor approximation
guarantee can be obtained for τ = o(k) as opposed to

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

only τ = o
(√
k
)
. In the asymptotic limit, our constant

factor of 0.387 for the greedy subroutine matches that of
(Orlin et al., 2016), but our algorithm permits significantly
“higher robustness” in the sense of allowing larger τ val-
ues. To achieve this, we require novel proof techniques,
which we now outline.

4.4. High-level overview of the analysis

The proof of Theorem 4.5 is provided in the supplemen-
tary material. Here we provide a high-level overview of the
main challenges.

Let E denote a cardinality-τ subset of the returned set S
that is removed. By the construction of the partitions, it is
easy to verify that each partition i contains a bucket from
which at most 2i items are removed. We denote these by
B0, . . . , Bdlog τe, and write EBi := E ∩Bi. Moreover, we
define E0 := E ∩ S0 and E1 := E ∩ S1.

We establish the following lower bound on the final objec-
tive function value:

f(S \E) ≥ max

{
f(S0 \E0), f(S1)− f(E1|(S \E)),

f

(dlog τe⋃
i=0

(Bi \ EBi)
)}

. (12)

The arguments to the first and third terms are trivially seen
to be subsets of S \ E, and the second term represents the
utility of the set S1 subsided by the utility of the elements
removed from S1.

The first two terms above are easily lower bounded by
convenient expressions via submodular and the β-iterative
property. The bulk of the proof is dedicated to bounding the
third term. To do this, we establish the following recursive
relations with suitably-defined “small” values of αj :

f

(
j⋃
i=0

(Bi \ EBi)

)
≥

(
1− 1

1 + 1
αj

)
f(Bj)

f

(
EBj

∣∣∣ j−1⋃
i=0

(Bi \ EBi)

)
≤ αjf

(
j−1⋃
i=0

(Bi \ EBi)

)
.

Intuitively, the first equation shows that the objective value
from buckets i = 0, . . . , j with removals cannot be too
much smaller than the objective value in bucket j without
removals, and the second equation shows that the loss in
bucket j due to the removals is at most a small fraction of
the objective value from buckets 0, . . . , j−1. The proofs of
both the base case of the induction and the inductive step
make use of submodularity properties and the β-iterative
property (cf., Definition 4.2).

Once the suitable lower bounds are obtained for the terms
in (12), the analysis proceeds similarly to (Orlin et al.,

2016). Specifically, we can show that as the second term
increases, the third term decreases, and accordingly lower
bound their maximum by the value obtained when the two
are equal. A similar balancing argument is then applied to
the resulting term and the first term in (12).

The condition τ ≤ k
3η(log k+2) follows directly from Propo-

sition 4.1; namely, it is a sufficient condition for |S0| ≤ k,
as is required by PRO.

5. Experiments
In this section, we numerically validate the performance of
PRO and the claims given in the preceding sections. In par-
ticular, we compare our algorithm against the OSU algo-
rithm proposed in (Orlin et al., 2016) on different datasets
and corresponding objective functions (see Table 3). We
demonstrate matching or improved performance in a broad
range of settings, as well as observing that PRO can be
implemented with larger values of τ , corresponding to a
greater robustness. Moreover, we show that for certain real-
world data sets, the classic GREEDY algorithm can perform
badly for the robust problem. We do not compare against
SATURATE (Krause et al., 2008), due to its high computa-
tional cost for even a small τ .

Setup. Given a solution set S of size k, we measure the per-
formance in terms of the minimum objective value upon the
worst-case removal of τ elements, i.e. minZ⊆S,|Z|≤τ f(S\
Z). Unfortunately, for a given solution set S, finding such a
set Z is an instance of the submodular minimization prob-
lem with a cardinality constraint,1 which is known to be
NP-hard with polynomial approximation factors (Svitkina
& Fleischer, 2011). Hence, in our experiments, we only
implement the optimal “adversary” (i.e., removal of items)
for small to moderate values of τ and k, for which we use
a fast C++ implementation of branch-and-bound.

Despite the difficulty in implementing the optimal adver-
sary, we observed in our experiments that the greedy ad-
versary, which iteratively removes elements to reduce the
objective value as much as possible, has a similar impact
on the objective compared to the optimal adversary for the
data sets considered. Hence, we also provide a larger-scale
experiment in the presence of a greedy adversary. Through-
out, we write OA and GA to abbreviate the optimal adver-
sary and greedy adversary, respectively.

In our experiments, the size of the robust part of the so-
lution set (i.e., |S0|) is set to τ2 and τ log τ for OSU and
PRO, respectively. That is, we set η = 1 in PRO, and
similarly ignore constant and logarithmic factors in OSU,
since both appear to be unnecessary in practice. We show

1This can be seen by noting that for submodular f and any
Z ⊆ X ⊆ V , f ′(Z) = f(X \ Z) remains submodular.

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

both the “raw” objective values of the solutions, as well
as the objective values after the removal of τ elements. In
all experiments, we implement GREEDY using the LAZY-
GREEDY implementation given in (Minoux, 1978).

The objective functions shown in Table 3 are given in
Section 3. For the exemplar objective function, we use
d(s, v) = ‖s− v‖2, and let the reference element e0 be the
zero vector. Instead of using the whole set V , we approxi-
mate the objective by considering a smaller random subset
of V for improved computational efficiency. Since the ob-
jective is additively decomposable and bounded, standard
concentration bounds (e.g., the Chernoff bound) ensure that
the empirical mean over a random subsample can be made
arbitrarily accurate.

Data sets. We consider the following datasets, along with
the objective functions given in Section 3:

• EGO-FACEBOOK: This network data consists of so-
cial circles (or friends lists) from Facebook forming an
undirected graph with 4039 nodes and 88234 edges.

• EGO-TWITTER: This dataset consists of 973 so-
cial circles from Twitter, forming a directed graph
with 81306 nodes and 1768149 edges. Both EGO-
FACEBOOK and EGO-TWITTER were used previously
in (Mcauley & Leskovec, 2014).

• TINY10K and TINY50K: We used two Tiny Images
data sets of size 10k and 50k consisting of images
each represented as a 3072-dimensional vector (Tor-
ralba et al., 2008). Besides the number of images,
these two datasets also differ in the number of classes
that the images are grouped into. We shift each vec-
tors to have zero mean.

• CM-MOLECULES: This dataset consists of 7211
small organic molecules, each represented as a 276
dimensional vector. Each vector is obtained by pro-
cessing the molecule’s Coulomb matrix representation
(Rupp, 2015). We shift and normalize each vector to
zero mean and unit norm.

Dataset n dimension f

Tiny-10k 10 000 3074 Exemplar
Tiny-50k 50 000 3074 Exemplar

CM-Molecules 7211 276 Exemplar

Network # nodes # edges f

ego-Facebook 4039 88 234 DomSet
ego-Twitter 81 306 1 768 149 DomSet

Table 3. Datasets and corresponding objective functions.

Results. In the first set of experiments, we compare PRO-
GREEDY (written using the shorthand PRO-GR in the leg-
end) against GREEDY and OSU on the EGO-FACEBOOK
and EGO-TWITTER datasets. In this experiment, the domi-
nating set selection objective in (4) is considered. Figure 2
(a) and (c) show the results before and after the worst-case
removal of τ = 7 elements for different values of k. In
Figure 2 (b) and (d), we show the objective value for fixed
k = 50 and k = 100, respectively, while the robustness
parameter τ is varied.

GREEDY achieves the highest raw objective value, fol-
lowed by PRO-GREEDY and OSU. However, after the
worst-case removal, PRO-GREEDY-OA outperforms both
OSU-OA and GREEDY-OA. In Figure 2 (a) and (b),
GREEDY-OA performs poorly due to a high concentration
of the objective value on the first few elements selected by
GREEDY. While OSU requires k ≥ τ2, PRO only requires
k ≥ τ log τ , and hence it can be run for larger values of τ
(e.g., see Figure 2 (b) and (c)). Moreover, in Figure 2 (a)
and (b), we can observe that although PRO uses a smaller
number of elements to build the robust part of the solution
set, it has better robustness in comparison with OSU.

In the second set of experiments, we perform the same
type of comparisons on the TINY10 and CM-MOLECULES
datasets. The exemplar based clustering in (5) is used as the
objective function. In Figure 2 (e) and (h), the robustness
parameter is fixed to τ = 7 and τ = 6, respectively, while
the cardinality k is varied. In Figure 2 (f) and (h), the car-
dinality is fixed to k = 100 and k = 50, respectively, while
the robustness parameter τ is varied.

Again, GREEDY achieves the highest objective value. On
the TINY10 dataset, GREEDY-OA (Figure 2 (e) and (f))
has a large gap between the raw and final objective, but it
still slightly outperforms PRO-GREEDY-OA. This demon-
strates that GREEDY can work well in some cases, de-
spite failing in others. We observed that it succeeds here
because the objective value is relatively more uniformly
spread across the selected elements. On the same dataset,
PRO-GREEDY-OA outperforms OSU-OA. On our second
dataset CM-MOLECULES (Figure 2 (g) and (h)), PRO-
GREEDY-OA achieves the highest robust objective value,
followed by OSU-OA and GREEDY-OA.

In our final experiment (see Figure 2 (i)), we compare
the performance of PRO-GREEDY against two instances of
PRO-STOCHASTIC-GREEDY with ε = 0.01 and ε = 0.08
(shortened to PRO-ST in the legend), seeking to understand
to what extent using the more efficient stochastic subrou-
tine impacts the performance. We also show the perfor-
mance of OSU. In this experiment, we fix k = 100 and
vary τ . We use the greedy adversary instead of the optimal
one, since the latter becomes computationally challenging
for larger values of τ .

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

Cardinality k

30 40 50 60 70 80 90 100

O
b
j.

va
lu
e

500

1000

1500

2000

2500

3000

3500

4000

(a) ego-Facebook, τ = 7

PRo-Gr
OSU
Greedy
PRo-Gr - OA
OSU - OA
Greedy - OA

Robustness τ

2 3 4 5 6 7 8 9 10

O
b
j.

va
lu
e

500

1000

1500

2000

2500

3000

3500

4000

(b) ego-Facebook, k = 50

Cardinality k

30 40 50 60 70 80 90 100

O
b
j.

va
lu
e

×10
4

2

2.5

3

3.5

4

(c) ego-Twitter, τ = 7

Robustness τ

2 3 4 5 6 7 8

O
b
j.

va
lu
e

×10
4

3.2

3.4

3.6

3.8

4

(d) ego-Twitter, k = 100

Cardinality k

30 40 50 60 70 80 90 100

O
b
j.

va
lu
e

×10
6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

(e) Tiny10, τ = 7

Robustness τ

2 3 4 5 6 7

O
b
j.

va
lu
e

×10
6

2.9

3

3.1

3.2

(f) Tiny10, k = 100

Robustness τ

3 4 5 6 7 8 9

O
b
j.

va
lu
e

0.95

0.955

0.96

0.965

0.97

0.975

0.98

(g) CM-Molecules, k = 50

Cardinality k

40 50 60 70 80 90 100

O
b
j.

va
lu
e

0.955

0.96

0.965

0.97

0.975

0.98

0.985

(h) CM-Molecules, τ = 6

Robustness τ

4 6 8 10 12 14 16 18 20 22

O
b
j.

va
lu
e

×10
6

2.4

2.6

2.8

3

3.2

3.4

3.6

(i) Tiny50, k = 100

PRo-Gr
OSU
PRo-St ǫ = 0.01
PRo-St ǫ = 0.08
PRo-Gr - GA
OSU - GA
PRo-St - GA ǫ = 0.01
PRo-St - GA ǫ = 0.08

Figure 2. Numerical comparisons of the algorithms PRO-GREEDY, GREEDY and OSU, and their objective values PRO-OA, OSU-OA
and GREEDY-OA once τ elements are removed. Figure (i) shows the performance on the larger scale experiment where both GREEDY

and STOCHASTIC-GREEDY are used as subroutines in PRO.

In Figure 2 (i), we observe a slight decrease in the ob-
jective value of PRO-STOCHASTIC-GREEDY due to the
stochastic optimization. On the other hand, the gaps be-
tween the robust and non-robust solutions remain similar,
or even shrink. Overall, we observe that at least in this ex-
ample, the stochastic subroutine does not compromise the
quality of the solution too significantly, despite having a
lower computational complexity.

6. Conclusion
We have provided a new Partitioned Robust (PRO) sub-
modular maximization algorithm attaining a constant-
factor approximation guarantee for general τ = o(k), thus

resolving an open problem posed in (Orlin et al., 2016).
Our algorithm uses a novel partitioning structure with par-
titions consisting of buckets with exponentially decreasing
size, thus providing a “robust part” of size O(τpoly log τ).
We have presented a variety of numerical experiments
where PRO outperforms both GREEDY and OSU. A po-
tentially interesting direction for further research is to un-
derstand the linear regime, in which τ = αk for some con-
stant α ∈ (0, 1), and in particular, to seek a constant-factor
guarantee for this regime.

Acknowledgment. This work was supported in part by
the European Commission under Grant ERC Future Proof,
SNF 200021-146750 and SNF CRSII2-147633, and ‘EPFL
Fellows’ (Horizon2020 665667).

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

References
Badanidiyuru, Ashwinkumar and Vondrák, Jan. Fast algo-

rithms for maximizing submodular functions. In ACM-
SIAM Symp. Disc. Alg. (SODA), pp. 1497–1514, 2014.

Bogunovic, Ilija and Krause, Andreas. Robust protection
of networks against cascading phenomena. Tech. Report
ETH Zürich, 2012.

Chen, Wei, Lin, Tian, Tan, Zihan, Zhao, Mingfei, and
Zhou, Xuren. Robust influence maximization. arXiv
preprint arXiv:1601.06551, 2016.

Globerson, Amir and Roweis, Sam. Nightmare at test time:
robust learning by feature deletion. In Int. Conf. Mach.
Learn. (ICML), 2006.

He, Xinran and Kempe, David. Robust influence maxi-
mization. In Int. Conf. Knowledge Discovery and Data
Mining (KDD), pp. 885–894, 2016.

Kempe, David, Kleinberg, Jon, and Tardos, Éva. Maxi-
mizing the spread of influence through a social network.
In Int. Conf. on Knowledge Discovery and Data Mining
(SIGKDD), 2003.

Krause, Andreas and Golovin, Daniel. Submodular func-
tion maximization. Tractability: Practical Approaches
to Hard Problems, 3(19):8, 2012.

Krause, Andreas and Guestrin, Carlos. Near-optimal ob-
servation selection using submodular functions. In Conf.
Art. Intell. (AAAI), 2007.

Krause, Andreas, McMahan, H Brendan, Guestrin, Carlos,
and Gupta, Anupam. Robust submodular observation se-
lection. Journal of Machine Learning Research, 9(Dec):
2761–2801, 2008.

Lin, Hui and Bilmes, Jeff. A class of submodular functions
for document summarization. In Assoc. for Comp. Ling.:
Human Language Technologies-Volume 1, 2011.

Lucic, Mario, Bachem, Olivier, Zadimoghaddam, Morteza,
and Krause, Andreas. Horizontally scalable submodular
maximization. In Proc. Int. Conf. Mach. Learn. (ICML),
2016.

Mcauley, Julian and Leskovec, Jure. Discovering social cir-
cles in ego networks. ACM Trans. Knowl. Discov. Data,
2014.

Minoux, Michel. Accelerated greedy algorithms for maxi-
mizing submodular set functions. In Optimization Tech-
niques, pp. 234–243. Springer, 1978.

Mirrokni, Vahab and Zadimoghaddam, Morteza. Random-
ized composable core-sets for distributed submodular
maximization. In ACM Symposium on Theory of Com-
puting (STOC), 2015.

Mirzasoleiman, Baharan, Badanidiyuru, Ashwinkumar,
Karbasi, Amin, Vondrák, Jan, and Krause, Andreas.
Lazier than lazy greedy. In Proc. Conf. Art. Intell.
(AAAI), 2015a.

Mirzasoleiman, Baharan, Karbasi, Amin, Badanidiyuru,
Ashwinkumar, and Krause, Andreas. Distributed sub-
modular cover: Succinctly summarizing massive data. In
Adv. Neur. Inf. Proc. Sys. (NIPS), pp. 2881–2889, 2015b.

Nemhauser, George L, Wolsey, Laurence A, and Fisher,
Marshall L. An analysis of approximations for maximiz-
ing submodular set functionsi. Mathematical Program-
ming, 14(1):265–294, 1978.

Norouzi-Fard, Ashkan, Bazzi, Abbas, Bogunovic, Ilija,
El Halabi, Marwa, Hsieh, Ya-Ping, and Cevher, Volkan.
An efficient streaming algorithm for the submodular
cover problem. In Adv. Neur. Inf. Proc. Sys. (NIPS),
2016.

Orlin, James B, Schulz, Andreas S, and Udwani, Rajan.
Robust monotone submodular function maximization. In
Int. Conf. on Integer Programming and Combinatorial
Opt. (IPCO). Springer, 2016.

Powers, Thomas, Bilmes, Jeff, Wisdom, Scott, Krout,
David W, and Atlas, Les. Constrained robust submod-
ular optimization. NIPS OPT2016 workshop, 2016.

Rupp, Matthias. Machine learning for quantum mechanics
in a nutshell. Int. Journal of Quantum Chemistry, 115
(16):1058–1073, 2015.

Staib, Matthew and Jegelka, Stefanie. Robust bud-
get allocation via continuous submodular functions.
http://people.csail.mit.edu/stefje/
papers/robust_budget.pdf, 2017.

Svitkina, Zoya and Fleischer, Lisa. Submodular approxi-
mation: Sampling-based algorithms and lower bounds.
SIAM Journal on Computing, 40(6):1715–1737, 2011.

Torralba, Antonio, Fergus, Rob, and Freeman, William T.
80 million tiny images: A large data set for nonparamet-
ric object and scene recognition. IEEE Trans. Patt. Ana.
Mach. Intel., 30(11):1958–1970, 2008.

http://people.csail.mit.edu/stefje/papers/robust_budget.pdf
http://people.csail.mit.edu/stefje/papers/robust_budget.pdf

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

Supplementary Material
“Robust Submodular Maximization: A Non-Uniform Partitioning Approach” (ICML 2017)

Ilija Bogunovic, Slobodan Mitrović, Jonathan Scarlett, and Volkan Cevher

A. Proof of Proposition 4.1
We have

|S0| =
dlog τe∑
i=0

dτ/2ie2iη

≤
dlog τe∑
i=0

(τ
2i

+ 1
)

2iη

≤ η(dlog τe+ 1)(τ + 2dlog τe)

≤ 3ητ(dlog τe+ 1)

≤ 3ητ(log k + 2).

B. Proof of Proposition 4.4
Recalling that Aj(T) denotes a set constructed by the algorithm after j iterations, we have

f(Aj(T))− f(Aj−1(T)) ≥ 1

β
max
e∈T

f(e|Aj−1(T))

≥ 1

β
max
e∈T

f(e|Ak(T))

≥ 1

β
max

e∈T\Ak(T)
f(e|Ak(T)), (13)

where the first inequality follows from the β-iterative property (6), and the second inequality follows from Aj−1(S) ⊆
Ak(S) and the submodularity of f .

Continuing, we have

f(Ak(T)) =

k∑
j=1

f(Aj(T))− f(Aj−1(T))

≥ k

β
max

e∈T\Ak(T)
f(e|Ak(T)),

where the last inequality follows from (13).

By rearranging, we have for any e ∈ T \ Ak(T) that

f(e|Ak(T)) ≤ β f(Ak(T))

k
.

C. Proof of Lemma 4.3
Recalling that Aj(T) denotes the set constructed after j iterations when applied to T , we have

max
e∈T\Aj−1(T)

f(e|Aj−1(T)) ≥ 1

k

∑
e∈OPT(k,T)\Aj−1(T)

f(e|Aj−1(T))

≥ 1

k
f(OPT(k, T)|Aj−1(T))

≥ 1

k

(
f(OPT(k, T))− f(Aj−1(T))

)
, (14)

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

where the first line holds since the maximum is lower bounded by the average, the line uses submodularity, and the last
line uses monotonicity.

By combining the β-iterative property with (14), we obtain

f(Aj(T))− f(Aj−1(T)) ≥ 1

β
max

e∈T\Aj−1(T)
f(e|Aj−1(T))

≥ 1

kβ

(
f(OPT(k, T))− f(Aj−1(T))

)
.

By rearranging, we obtain

f(OPT(k, T))− f(Aj−1(T)) ≤ βk
(
f(Aj(T))− f(Aj−1(T))

)
. (15)

We proceed by following the steps from the proof of Theorem 1.5 in (Krause & Golovin, 2012). Defining δj :=
f(OPT(k, T))− f(Aj(T)), we can rewrite (15) as δj−1 ≤ βk(δj−1 − δj). By rearranging, we obtain

δj ≤
(

1− 1

βk

)
δj−1.

Applying this recursively, we obtain δl ≤
(
1− 1

βk

)l
δ0, where δ0 = f(OPT(k, T)) since f is normalized (i.e., f(∅) = 0).

Finally, applying 1− x ≤ e−x and rearranging, we obtain

f(Al(T)) ≥
(

1− e−
l
βk

)
f(OPT(k, T)).

D. Proof of Theorem 4.5
D.1. Technical Lemmas

We first provide several technical lemmas that will be used throughout the proof. We begin with a simple property of
submodular functions.

Lemma D.1 For any submodular function f on a ground set V , and any sets A,B,R ⊆ V , we have

f(A ∪B)− f(A ∪ (B \R)) ≤ f(R | A).

Proof. Define R2 := A ∩R, and R1 := R \A = R \R2. We have

f(A ∪B)− f(A ∪ (B \R)) = f(A ∪B)− f((A ∪B) \R1)

= f(R1 | (A ∪B) \R1)

≤ f(R1 | (A \R1)) (16)
= f(R1 | A) (17)
= f(R1 ∪R2 | A) (18)
= f(R | A),

where (16) follows from the submodularity of f , (17) follows since A and R1 are disjoint, and (18) follows since R2 ⊆ A.
2

The next lemma provides a simple lower bound on the maximum of two quantities; it is stated formally since it will be
used on multiple occasions.

Lemma D.2 For any set function f , sets A,B, and constant α > 0, we have

max{f(A), f(B)− αf(A)} ≥
(

1

1 + α

)
f(B), (19)

and

max{αf(A), f(B)− f(A)} ≥
(

α

1 + α

)
f(B). (20)

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

Proof. Starting with (19), we observe that one term is increasing in f(A) and the other is decreasing in f(A). Hence, the
maximum over all possible f(A) is achieved when the two terms are equal, i.e., f(A) = 1

1+αf(B). We obtain (20) via the
same argument. 2

The following lemma relates the function values associated with two buckets formed by PRO, denoted by X and Y . It is
stated with respect to an arbitrary set EY , but when we apply the lemma, this will correspond to the elements of Y that are
removed by the adversary.

Lemma D.3 Under the setup of Theorem 4.5, let X and Y be buckets of PRO such that Y is constructed at a later time
than X . For any set EY ⊆ Y , we have

f(X ∪ (Y \ EY)) ≥ 1

1 + α
f(Y),

and
f(EY | X) ≤ αf(X), (21)

where α = β |EY ||X| .

Proof. Inequality (21) follows from the β-iterative property of A; specifically, we have from (8) that

f(e|X) ≤ β f(X)

|X|
,

where e is any element of the ground set that is neither in X nor any bucket constructed before X . Hence, we can write

f(EY | X) ≤
∑
e∈EY

f(e|X) ≤ β |EY |
|X|

f(X) = αf(X),

where the first inequality is by submodularity. This proves (21).

Next, we write

f(Y)− f(X ∪ (Y \ EY)) ≤ f(X ∪ Y)− f(X ∪ (Y \ EY)) (22)
≤ f(EY | X), (23)

where (22) is by monotonicity, and (23) is by Lemma D.1 with A = X , B = Y , and R = EY .

Combining (21) and (23), together with the fact that f(X ∪ (Y \ EY)) ≥ f(X) (by monotonicity), we have

f(X ∪ (Y \ EY)) ≥ max {f(X), f(Y)− αf(X)}

≥ 1

1 + α
f(Y), (24)

where (24) follows from (19). 2

Finally, we provide a lemma that will later be used to take two bounds that are known regarding the previously-constructed
buckets, and use them to infer bounds regarding the next bucket.

Lemma D.4 Under the setup of Theorem 4.5, let Y and Z be buckets of PRO such that Z is constructed at a later time
than Y , and let EY ⊆ Y and EZ ⊆ Z be arbitrary sets. Moreover, let X be a set (not necessarily a bucket) such that

f((Y \ EY) ∪X) ≥ 1

1 + α
f(Y), (25)

and
f(EY | X) ≤ αf(X). (26)

Then, we have
f(EZ | (Y \ EY) ∪X) ≤ αnextf((Y \ EY) ∪X), (27)

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

and
f((Z \ EZ) ∪ (Y \ EY) ∪X) ≥ 1

1 + αnext
f(Z), (28)

where

αnext = β
|EZ |
|Y |

(1 + α) + α. (29)

Proof. We first prove (27):

f(EZ | (Y \ EY) ∪X) = f((Y \ EY) ∪X ∪ EZ)− f((Y \ EY) ∪X)

≤ f(X ∪ Y ∪ EZ)− f((Y \ EY) ∪X) (30)
= f(EZ | X ∪ Y) + f(X ∪ Y)− f((Y \ EY) ∪X)

≤ f(EZ | Y) + f(X ∪ Y)− f((Y \ EY) ∪X) (31)

≤ β |EZ |
|Y |

f(Y) + f(X ∪ Y)− f((Y \ EY) ∪X) (32)

≤ β |EZ |
|Y |

(1 + α)f((Y \ EY) ∪X) + f(X ∪ Y)− f((Y \ EY) ∪X) (33)

≤ β |EZ |
|Y |

(1 + α)f((Y \ EY) ∪X) + f(EY | (Y \ EY) ∪X) (34)

≤ β |EZ |
|Y |

(1 + α)f((Y \ EY) ∪X) + f(EY | X) (35)

≤ β |EZ |
|Y |

(1 + α)f((Y \ EY) ∪X) + αf(X) (36)

≤ β |EZ |
|Y |

(1 + α)f((Y \ EY) ∪X) + αf((Y \ EY) ∪X) (37)

=

(
β
|EZ |
|Y |

(1 + α) + α

)
f((Y \ EY) ∪X)., (38)

where: (30) and (31) follow by monotonicity and submodularity, respectively; (32) follows from the second part of
Lemma D.3; (33) follows from (25); (34) is obtained by applying Lemma D.1 for A = X , B = Y , and R = EY ;
(35) follows by submodularity; (36) follows from (26); (37) follows by monotonicity. Finally, by defining αnext :=

β |EZ ||Y | (1 + α) + α in (38) we establish the bound in (27).

In the rest of the proof, we show that (28) holds as well. First, we have

f((Z \ EZ) ∪ (Y \ EY) ∪X) ≥ f(Z)− f(EZ | (Y \ EY) ∪X) (39)

by Lemma D.1 with B = Z, R = EZ and A = (Y \EY)∪X . Now we can use the derived bounds (38) and (39) to obtain

f((Z \ EZ) ∪ (Y \ EY) ∪X) ≥ f(Z)− f(EZ | (Y \ EY) ∪X)

≥ f(Z)−
(
β
|EZ |
|Y |

(1 + α) + α

)
f((Y \ EY) ∪X).

Finally, we have

f((Z \ EZ) ∪ (Y \ EY) ∪X) ≥ max

{
f((Y \ EY) ∪X), f(Z)−

(
β
|EZ |
|Y |

(1 + α) + α

)
f((Y \ EY) ∪X)

}
≥ 1

1 + αnext
f(Z),

where the last inequality follows from Lemma D.1. 2

Observe that the results we obtain on f(EZ | (Y \ EY) ∪X) and on f((Z \ EZ) ∪ (Y \ EY) ∪X) in Lemma D.4 are of
the same form as the pre-conditions of the lemma. This will allow us to apply the lemma recursively.

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

D.2. Characterizing the Adversary

Let E denote a set of elements removed by an adversary, where |E| ≤ τ . Within S0, PRO constructs dlog τe+1 partitions.
Each partition i ∈ {0, . . . , dlog τe} consists of dτ/2ie buckets, each of size 2iη, where η ∈ N will be specified later. We
let B denote a generic bucket, and define EB to be all the elements removed from this bucket, i.e. EB = B ∩ E.

The following lemma identifies a bucket in each partition for which not too many elements are removed.

Lemma D.5 Under the setup of Theorem 4.5, suppose that an adversary removes a set E of size at most τ from the set S
constructed by PRO. Then for each partition i, there exists a bucket Bi such that |EBi | ≤ 2i, i.e., at most 2i elements are
removed from this bucket.

Proof. Towards contradiction, assume that this is not the case, i.e., assume |EBi | > 2i for every bucket of the i-th partition.
As the number of buckets in partition i is dτ/2ie, this implies that the adversary has to spend a budget of

|E| ≥ 2i|EBi | > 2idτ/2ie = τ,

which is in contradiction with |E| ≤ τ . 2

We consider B0, . . . , Bdlog τe as above, and show that even in the worst case, f
(⋃dlog τe

i=0 (Bi \ EBi)
)

is almost as large

as f
(
Bdlog τe

)
for appropriately set η. To achieve this, we apply Lemma D.4 multiple times, as illustrated in the following

lemma. We henceforth write ηh := η/2 for brevity.

Lemma D.6 Under the setup of Theorem 4.5, suppose that an adversary removes a set E of size at most τ from the set S
constructed by PRO, and let B0, · · · , Bdlog τe be buckets such that |EBi | ≤ 2i for each i ∈ {1, · · · dlog τe} (cf., Lemma
D.5). Then,

f

dlog τe⋃
i=0

(Bi \ EBi)

 ≥ (1− 1

1 + 1
α

)
f
(
Bdlog τe

)
=

1

1 + α
f
(
Bdlog τe

)
, (40)

and

f

EBdlog τe ∣∣∣ dlog τe−1⋃
i=0

(Bi \ EBi)

 ≤ αf
dlog τe−1⋃

i=0

(Bi \ EBi)

 , (41)

for some

α ≤ β2 (1 + ηh)dlog τe − ηdlog τeh

η
dlog τe
h

. (42)

Proof. In what follows, we focus on the case where there exists some bucketB0 in partition i = 0 such thatB0\EB0
= B0.

If this is not true, then E must be contained entirely within this partition, since it contains τ buckets. As a result, (i) we
trivially obtain (40) even when α is replaced by zero, since the union on the left-hand side contains Bdlog τe; (ii) (41)
becomes trivial since the left-hand side is zero is a result of EBdlog τe = ∅.

We proceed by induction. Namely, we show that

f

(
j⋃
i=0

(Bi \ EBi)

)
≥

(
1− 1

1 + 1
αj

)
f(Bj) =

1

1 + αj
f(Bj), (43)

and

f

(
EBj

∣∣∣ j−1⋃
i=0

(Bi \ EBi)

)
≤ αjf

(
j−1⋃
i=0

(Bi \ EBi)

)
, (44)

for every j ≥ 1, where

αj ≤ β2 (1 + ηh)j − ηjh
ηjh

. (45)

Upon showing this, the lemma is concluded by setting j = dlog τe.

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

Base case j = 1. In the case that j = 1, taking into account that EB0
= ∅, we observe from (43) that our goal is to bound

f(B0 ∪ (B1 \ EB1)). Applying Lemma D.3 with X = B0, Y = B1, and EY = EB1 , we obtain

f(B0 ∪ (B1 \ EB1
)) ≥ 1

1 + α1
f(B1),

and
f(EB1

| B0) ≤ α1f(B0),

where α1 = β
|EB1

|
|B0| . We have |B0| = η, while |EB1

| ≤ 2 by assumption. Hence, we can upper bound α1 and rewrite as

α1 ≤ β
2

η
= β

1

ηh
= β

(1 + ηh)− ηh
ηh

≤ β2 (1 + ηh)− ηh
ηh

,

where the last inequality follows since β ≥ 1 by definition.

Inductive step. Fix j ≥ 2. Assuming that the inductive hypothesis holds for j− 1, we want to show that it holds for j as
well.

We write

f

(
j⋃
i=0

(Bi \ EBi)

)
= f

((
j−1⋃
i=0

(Bi \ EBi)

)
∪ (Bj \ EBj)

)
,

and apply Lemma D.4 with X =
⋃j−2
i=0 (Bi \ EBi), Y = Bj−1, EY = EBj−1

, Z = Bj , and EZ = EBj . Note that the
conditions (25) and (26) of Lemma D.4 are satisfied by the inductive hypothesis. Hence, we conclude that (43) and (44)
hold with

αj = β
|EBj |
|Bj−1|

(1 + αj−1) + αj−1.

It remains to show that (45) holds for αj , assuming it holds for αj−1. We have

αj = β
|EBj |
|Bj−1|

(1 + αj−1) + αj−1

≤ β 1

ηh

(
1 + β

(1 + ηh)j−1 − ηj−1h

ηj−1h

)
+ β

(1 + ηh)j−1 − ηj−1h

ηj−1h

(46)

≤ β2

(
1

ηh

(
1 +

(1 + ηh)j−1 − ηj−1h

ηj−1h

)
+

(1 + ηh)j−1 − ηj−1h

ηj−1h

)
(47)

= β2

(
1

ηh

(1 + ηh)j−1

ηj−1h

+
(1 + ηh)j−1 − ηj−1h

ηj−1h

)

= β2

(
(1 + ηh)j−1

ηjh
+
ηh(1 + ηh)j−1 − ηjh

ηjh

)

= β2 (1 + ηh)j − ηjh
ηjh

,

where (46) follows from (45) and the fact that

β
|EBj |
|Bj−1|

≤ β 2j

2j−1η
= β

2

η
= β

1

ηh
,

by |EBj | ≤ 2j and |Bj−1| = 2j−1η; and (47) follows since β ≥ 1. 2

Inequality (45) provides an upper bound on αj , but it is not immediately clear how the bound varies with j. The following
lemma provides a more compact form.

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

Lemma D.7 Under the setup of Lemma D.6, we have for 2dlog τe ≤ ηh that

αj ≤ 3β2 j

η
(48)

Proof. We unfold the right-hand side of (45) in order to express it in a simpler way. First, consider j = 1. From (45) we
obtain α1 ≤ 2β2 1

η , as required. For j ≥ 2, we obtain the following:

β−2αj ≤
(1 + ηh)j − ηjh

ηjh

=

j−1∑
i=0

(
j

i

)
ηih
ηjh

(49)

=
j

ηh
+

j−2∑
i=0

(
j

i

)
ηih
ηjh

(50)

=
j

ηh
+

j−2∑
i=0

(∏j−i
t=1(j − t+ 1)∏j−i

t=1 t

ηih
ηjh

)

≤ j

ηh
+

1

2

j−2∑
i=0

jj−i
ηih
ηjh

(51)

=
j

ηh
+

1

2

j−2∑
i=0

(
j

ηh

)j−i

=
j

ηh
+

1

2

(
−1− j

ηh
+

j∑
i=0

(
j

ηh

)j−i)
,

where (49) is a standard summation identity, and (51) follows from
∏j−i
t=1(j− t+ 1) ≤ jj−i and

∏j−i
t=1 t ≥ 2 for j− i ≥ 2.

Next, explicitly evaluating the summation of the last equality, we obtain

β−2αj ≤
j

ηh
+

1

2

−1− j

ηh
+

1−
(
j
ηh

)j+1

1− j
ηh

≤ j

ηh
+

1

2

(
−1− j

ηh
+

1

1− j
ηh

)

=
j

ηh
+

1

2

(
j
ηh

)2
1− j

ηh

 (52)

=
j

ηh
+

j

2ηh

(
j
ηh

1− j
ηh

)
, (53)

where (52) follows from (−a− 1)(−a+ 1) = a2 − 1 with a = j/ηh.

Next, observe that if j/ηh ≤ 1/2, or equivalently
2j ≤ ηh, (54)

then we can weaken (53) to

β−2αj ≤
j

ηh
+

j

2ηh
=

3

2

j

ηh
= 3

j

η
, (55)

which yields (48).

2

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

D.3. Completing the Proof of Theorem 4.5

We now prove Theorem 4.5 in several steps. Throughout, we define µ to be a constant such that f(E1 | (S \E)) = µf(S1)
holds, and we write E0 := E∗S ∩ S0, E1 := E∗S ∩ S1, and EBi := E∗S ∩Bi, where E∗S is defined in (9). We also make use
of the following lemma characterizing the optimal adversary. The proof is straightforward, and can be found in Lemma 2
of (Orlin et al., 2016)

Lemma D.8 (Orlin et al., 2016) Under the setup of Theorem 4.5, we have for all X ⊂ V with |X| ≤ τ that

f(OPT(k, V, τ) \ E∗OPT(k,V,τ)) ≤ f(OPT(k − τ, V \X)).

Initial lower bounds: We start by providing three lower bounds on f(S \ E∗S). First, we observe that f(S \ E∗S) ≥
f(S0 \ E0) and f(S \ E∗S) ≥ f

(⋃dlog τe
i=0 (Bi \ EBi)

)
. We also have

f(S \ E) = f(S)− f(S) + f(S \ E)

= f(S0 ∪ S1) + f(S \ E0)− f(S \ E0)− f(S) + f(S \ E) (56)
= f(S1) + f(S0 | S1) + f(S \ E0)− f(S)− f(S \ E0) + f(S \ E)

= f(S1) + f(S0 | (S \ S0)) + f(S \ E0)− f(E0 ∪ (S \ E0))− f(S \ E0) + f(S \ E) (57)
= f(S1) + f(S0 | (S \ S0))− f(E0 | (S \ E0))− f(S \ E0) + f(S \ E)

= f(S1) + f(S0 | (S \ S0))− f(E0 | (S \ E0))− f(E1 ∪ (S \ E)) + f(S \ E) (58)
= f(S1) + f(S0 | (S \ S0))− f(E0 | (S \ E0))− f(E1 | S \ E)

= f(S1)− f(E1 | S \ E) + f(S0 | (S \ S0))− f(E0 | (S \ E0))

≥ (1− µ)f(S1), (59)

where (56) and (57) follow from S = S0∪S1, (58) follows from E∗S = E0∪E1, and (59) follows from f(S0 | (S \S0))−
f(E0 | (S \ E0)) ≥ 0 (due to E0 ⊆ S0 and S \ S0 ⊆ S \ E0), along with the definition of µ.

By combining the above three bounds on f(S \ E∗S), we obtain

f(S \ E∗S) ≥ max

f(S0 \ E0), (1− µ)f(S1), f

dlog τe⋃
i=0

(Bi \ EBi)

 . (60)

We proceed by further bounding these terms.

Bounding the first term in (60): Defining S′0 := OPT(k − τ, V \E0) ∩ (S0 \E0) and X := OPT(k − τ, V \E0) \ S′0,
we have

f(S0 \ E0) + f(OPT(k − τ, V \ S0)) ≥ f(S′0) + f(X) (61)
≥ f(OPT(k − τ, V \ E0)) (62)
≥ f(OPT(k, V, τ) \ E∗OPT(k,V,τ)), (63)

where (61) follows from monotonicity, i.e. (S0 \ E0) ⊆ S′0 and (V \ S0) ⊆ (V \ E0), (62) follows from the fact that
OPT(k − τ, V \E0) = S′0 ∪X and submodularity,2 and (63) follows from Lemma D.8 and |E0| ≤ τ . We rewrite (63) as

f(S0 \ E0) ≥ f(OPT(k, V, τ) \ E∗OPT(k,V,τ))− f(OPT(k − τ, V \ S0)). (64)

Bounding the second term in (60): Note that S1 is obtained by using A that satisfies the β-iterative property on the set
V \ S0, and its size is |S1| = k − |S0|. Hence, from Lemma 4.3 with k − τ in place of k, we have

f(S1) ≥
(

1− e−
k−|S0|
β(k−τ)

)
f(OPT(k − τ, V \ S0)). (65)

2The submodularity property can equivalently be written as f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

Bounding the third term in (60): We can view S1 as a large bucket created by our algorithm after creating the buckets
in S0. Therefore, we can apply Lemma D.4 with X =

⋃dlog τe−1
i=0 (Bi \ EBi), Y = Bdlog τe, Z = S1, EY = E∗S ∩ Y ,

and EZ = E1. Conditions (25) and (26) needed to apply Lemma D.4 are provided by Lemma D.6. From Lemma D.4, we
obtain the following with α as in (42):

f

E1

∣∣∣∣∣
dlog τe⋃

i=0

(Bi \ EBi)

 ∪ (S1 \ E1)

 ≤ (β |E1|
|Bdlog τe|

(1 + α) + α

)
f

dlog τe⋃
i=0

(Bi \ EBi)

 . (66)

Furthermore, noting that the assumption η ≥ 4(log k+ 1) implies 2dlog τe ≤ ηh, we can upper-bound α as in Lemma D.7
by (48) for j = dlog τe. Also, we have β |E1|

|Bdlog τe|
≤ β τ

2dlog τeη
≤ β

η . Putting these together, we upper bound (66) as
follows:

f

E1

∣∣∣∣∣
dlog τe⋃

i=0

(Bi \ EBi)

 ∪ (S1 \ E1)

 ≤ (β
η

(
1 +

3β2dlog τe
η

)
+

3β2dlog τe
η

)
f

dlog τe⋃
i=0

(Bi \ EBi)

≤ 5β3dlog τe

η
f

dlog τe⋃
i=0

(Bi \ EBi)

 ,

where we have used η ≥ 1 and dlog τe ≥ 1 (since τ ≥ 2 by assumption). We rewrite the previous equation as

f

dlog τe⋃
i=0

(Bi \ EBi)

 ≥ η

5β3dlog τe
f

E1

∣∣∣∣∣
dlog τe⋃

i=0

(Bi \ EBi)

 ∪ (S1 \ E1)

≥ η

5β3dlog τe
f(E1 | (S \ E)) (67)

=
η

5β3dlog τe
µf(S1), (68)

where (67) follows from submodularity, and (68) follows from the definition of µ.

Combining the bounds: Returning to (60), we have

f(S \ E∗S) ≥ max

f(S0 \ E0), (1− µ)f(S1), f

dlog τe⋃
i=0

(Bi \ EBi)

≥ max

{
f(S0 \ E0), (1− µ)f(S1),

η

5β3dlog τe
µf(S1)

}
(69)

≥ max{f(OPT(k, V, τ) \ E∗OPT(k,V,τ))− f(OPT(k − τ, V \ S0)),

(1− µ)
(

1− e−
k−|S0|
β(k−τ)

)
f(OPT(k − τ, V \ S0)),

η

5β3dlog τe
µ
(

1− e−
k−|S0|
β(k−τ)

)
f(OPT(k − τ, V \ S0))} (70)

≥ max{f(OPT(k, V, τ) \ E∗OPT(k,V,τ))− f(OPT(k − τ, V \ S0)),
η

5β3dlog τe

1 + η
5β3dlog τe

(
1− e−

k−|S0|
β(k−τ)

)
f(OPT(k − τ, V \ S0))} (71)

= max{f(OPT(k, V, τ) \ E∗OPT(k,V,τ))− f(OPT(k − τ, V \ S0)),

η

5β3dlog τe+ η

(
1− e−

k−|S0|
β(k−τ)

)
f(OPT(k − τ, V \ S0))}

≥
η

5β3dlog τe+η

(
1− e−

k−|S0|
β(k−τ)

)
1 + η

5β3dlog τe+η

(
1− e−

k−|S0|
β(k−τ)

)f(OPT(k, V, τ) \ E∗OPT(k,V,τ)), (72)

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

where (69) follows from (68), (70) follows from (64) and (65), (71) follows since max{1− µ, cµ} ≥ c
1+c analogously to

(19), and (72) follows from (20). Hence, we have established (72).

Turning to the permitted values of τ , we have from Proposition 4.1 that

|S0| ≤ 3ητ(log k + 2).

For the choice of τ to yield valid set sizes, we only require |S0| ≤ k; hence, it suffices that

τ ≤ k

3η(log k + 2)
. (73)

Finally, we consider the second claim of the lemma. For τ ∈ o
(

k
η(log k)

)
we have |S0| ∈ o(k). Furthermore, by setting

η ≥ log2 k (which satisfies the assumption η ≥ 4(log k + 1) for large k), we get k−|S0|
β(k−τ) → β−1 and η

5β3dlog τe+η → 1 as

k →∞. Hence, the constant factor converges to 1−e−1/β

2−e−1/β , yielding (11). In the case that GREEDY is used as the subroutine,

we have β = 1, and hence the constant factor converges t 1−e−1

2−e−1 ≥ 0.387. If THRESHOLDING-GREEDY is used, we have

β = 1
1−ε , and hence the constant factor converges to 1−eε−1

2−eε−1 ≥ (1− ε) 1−e−1

2−e−1 ≥ (1− ε)0.387.

