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Abstract

We study the problem of maximizing a mono-
tone set function subject to a cardinality con-
straint k in the setting where some number
of elements τ is deleted from the returned
set. The focus of this work is on the worst-
case adversarial setting. While there exist
constant-factor guarantees when the function
is submodular [1, 2], there are no guarantees
for non-submodular objectives. In this work,
we present a new algorithm Oblivious-
Greedy and prove the first constant-factor
approximation guarantees for a wider class
of non-submodular objectives. The obtained
theoretical bounds are the first constant-
factor bounds that also hold in the linear
regime, i.e. when the number of deletions τ
is linear in k. Our bounds depend on estab-
lished parameters such as the submodularity
ratio and some novel ones such as the inverse
curvature. We bound these parameters for
two important objectives including support
selection and variance reduction. Finally, we
numerically demonstrate the robust perfor-
mance of Oblivious-Greedy for these two
objectives on various datasets.

1 Introduction

A wide variety of important problems in machine
learning can be formulated as the maximization of a
monotone1 set function f : 2V → R+ under the cardi-

†Equal contribution.
1Non-negative and normalized (i.e. f(∅) = 0) f(·) is

monotone if for any sets X ⊆ Y ⊆ V it holds f(X) ≤ f(Y ).
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nality constraint k, i.e.

max
S⊆V,|S|≤k

f(S), (1)

where V = {v1, · · · vn} is the ground set of items. How-
ever, in many applications, we might require robust-
ness of the solution set, meaning that the objective
value should deteriorate as little as possible after a
subset of elements is deleted.

For example, an important problem in machine learn-
ing is feature selection, where the goal is to extract a
subset of features that are informative w.r.t. a given
task (e.g. classification). For some tasks, it is of great
importance to select features that exhibit robustness
against deletions. This is particularly important in
domains with non-stationary feature distributions or
with input sensor failures [3]. Another important ex-
ample is the optimization of an unknown function from
point evaluations that require performing costly ex-
periments. When the experiments can fail, protecting
against worst-case failures becomes important.

In this work, we consider the following robust variant
of Problem (1):

max
S⊆V,|S|≤k

min
E⊆S,|E|≤τ

f(S \ E), (2)

where2 τ is the size of subset E that is removed from
the solution set S. When the objective function ex-
hibits submodularity, a natural notion of diminishing
returns3, a constant factor approximation guarantee
can be obtained for the robust Problem 2 [1, 2]. How-
ever, in many applications such as the above men-
tioned feature selection problem, the objective func-
tion f(·) is not submodular and the obtained guaran-
tees are not applicable.

Background and related work. When the objec-
tive function is submodular, the simple Greedy algo-
rithm [4] achieves a (1 − 1/e)-multiplicative approxi-
mation guarantee for Problem 1. The constant factor

2When τ = 0, Problem (2) reduces to Problem (1).
3f(·) is submodular if for any sets X ⊆ Y ⊆ V and

any element e ∈ V \ Y , it holds that f(X ∪ {e})− f(X) ≥
f(Y ∪ {e})− f(Y ).
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can be further improved by exploiting the properties of
the objective function, such as the closeness to being
modular captured by the notion of curvature [5, 6, 7].

In many cases, the Greedy algorithm performs well
empirically even when the objective function deviates
from being submodular. An important class of such
objectives are γ-weakly submodular functions. Simply
put, submodularity ratio γ is a quantity that charac-
terizes how close the function is to being submodu-
lar. It was first introduced in [8], where it was shown
that for such functions the approximation ratio of
Greedy for Problem (1) degrades slowly as the sub-
modularity ratio decreases i.e. as (1 − e−γ). In [9],
the authors obtain the approximation guarantee of the
form α−1(1− e−γα), that further depends on the cur-
vature α.

When the objective is submodular, the Greedy algo-
rithm can perform arbitrarily badly when applied to
Problem (2) [1, 2]. A submodular version of Prob-
lem (2) was first introduced in Krause et al. [10],
while the first efficient algorithm and constant fac-
tor guarantees were obtained in Orlin et al. [1] for
τ = o(

√
k). In Bogunovic et al. [2], the authors intro-

duce the PRo-GREEDY algorithm that attains the
same 0.387-guarantee but it allows for greater robust-
ness, i.e. the allowed number of removed elements is
τ = o(k). It is not clear how the obtained guarantees
generalize for non-submodular functions.

One important class of non-submodular functions that
we consider in this work are those used for support
selection:

f(S) := max
x∈X ,supp(x)⊆S

l(x), (3)

where l(·) is a continuous function, X is a convex set
and supp(x) = {i : xi 6= 0}. A popular way to solve
the problem of finding a k-sparse vector that maxi-
mizes l, i.e. x ∈ arg maxx∈X ,‖x‖0≤k l(x) is to maximize
the auxiliary set function in (3) subject to the cardi-
nality constraint k. This setting and its variants have
been used in various applications, for example, sparse
approximation [8, 11], feature selection [12], sparse
recovery [13], sparse M-estimation [14] and column
subset selection problems [15]. An important result
from [16] states that if l(·) is (m,L)-(strongly concave,
smooth) then f(S) is weakly submodular with sub-
modularity ratio γ ≥ m

L . Consequently, this result en-
larges the number of problems where Greedy comes
with guarantees. In this work, we consider the robust
version of this problem, where the goal is to protect
against the worst-case adversarial deletions of features.

Deletion robust submodular maximization in the
streaming setting has been considered in [17, 18, 19].
Other versions of robust submodular optimization

problems have also been studied. In [10], the goal
is to select a set of elements that is robust against
the worst possible objective from a given finite set of
monotone submodular functions. The same problem
with different types of constraints is considered in [20].
It was further studied in the domain of influence max-
imization [21, 22]. The robust version of the budget
allocation problem was considered in [23].In [24], the
authors study the problem of maximizing a monotone
submodular function under adversarial noise. We con-
clude this section by noting that very recently a couple
of different works have further studied robust submod-
ular problems [25, 26, 27, 28].

Main contributions:

• We initiate the study of the robust optimiza-
tion Problem (2) for a wider class of mono-
tone non-submodular functions. We present a
new algorithm Oblivious-Greedy and prove the
first constant factor approximation guarantees for
Problem (2). When the function is submodular
and under mild conditions, we recover the ap-
proximation guarantees obtained in the previous
works [1, 2].

• For both non-submodular and submodular case,
we obtain the first constant factor approximation
guarantees for the linear regime, i.e. when τ = ck
for some c ∈ (0, 1).

• Our theoretical bounds are expressed in terms of
parameters that further characterize a set func-
tion. Some of them have been used in previ-
ous works, e.g. submodularity ratio, and some of
them are novel, such as the inverse curvature. We
prove some interesting relations between these pa-
rameters and obtain theoretical bounds for them
in two important applications: (i) support selec-
tion and (ii) variance reduction objective used in
batch Bayesian optimization. This allows us to
obtain the first robust guarantees for these two
important objectives.

• Finally, we experimentally validate the robustness
of Oblivious-Greedy in several scenarios, and
demonstrate that it outperforms other robust and
non-robust algorithms.

2 Preliminaries

Set function ratios. In this work, we consider a nor-
malized monotone set function f : 2V → R+; we pro-
ceed by defining several quantities that characterize
it. Some of the quantities were introduced and used
in various different works, while the novel ones that
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we consider are inverse curvature, bipartite supermod-
ularity ratio and (super/sub)additivity ratio.

Definition 1 (Submodularity [8] and Supermodular-
ity ratio). The submodularity ratio of f(·) is the largest
scalar γ ∈ [0, 1] s.t.∑

i∈Ω f({i}|S)

f(Ω|S)
≥ γ, ∀ disjoint S,Ω ⊆ V. (4)

while the supermodularity ratio is the largest scalar γ̌ ∈
[0, 1] s.t.

f(Ω|S)∑
i∈Ω f({i}|S)

≥ γ̌, ∀ disjoint S,Ω ⊆ V. (5)

The function f(·) is submodular (supermodular)
iff γ = 1 (γ̌ = 1). Hence, the submodular-
ity/supermodularity ratio measures to what extent
the function has submodular/supermodular proper-
ties. While f(·) is modular iff γ = γ̌ = 1, in general,
γ can be different from γ̌.

Definition 2 (Generalized curvature [6, 9] and inverse
generalized curvature). The generalized curvature of
f(·) is the smallest scalar α ∈ [0, 1] s.t.

f({i}|S \ {i} ∪ Ω)

f({i}|S \ {i})
≥ 1− α, ∀S,Ω ⊆ V, i ∈ S \ Ω,

(6)
while the inverse generalized curvature is the smallest
scalar α̌ ∈ [0, 1] s.t.

f({i}|S \ {i})
f({i}|S \ {i} ∪ Ω)

≥ 1− α̌, ∀S,Ω ⊆ V, i ∈ S \ Ω.

(7)

The function f(·) is submodular (supermodular) iff
α̌ = 0 (α = 0). The function is modular iff α = α̌ = 0.
In general, α can be different from α̌.

Definition 3 (sub/superadditivity ratio). The subad-
ditivity ratio of f(·) is the largest scalar ν ∈ [0, 1] such
that ∑

i∈S f({i})
f(S)

≥ ν, ∀S ⊆ V. (8)

The superadditivity ratio is the largest scalar ν̌ ∈ [0, 1]
such that

f(S)∑
i∈S f({i})

≥ ν̌, ∀S ⊆ V. (9)

If the function is submodular (supermodular) then ν =
1 (ν̌ = 1).

The following proposition captures the relation be-
tween the above quantities.

Proposition 1. For any f(·), the following relations
hold:

ν ≥ γ ≥ 1− α̌ and ν̌ ≥ γ̌ ≥ 1− α.

We also provide a more general definition of the bipar-
tite subadditivity ratio used in [12].

Definition 4 (Bipartite subadditivity ratio). The bi-
partite subadditivity ratio of f(·) is the largest scalar
θ ∈ [0, 1] s.t.

f(A) + f(B)

f(S)
≥ θ, ∀S ⊆ V,A ∪B = S,A ∩B = ∅.

(10)

Remark 1. For any f(·), it holds that θ ≥ ν̌ν.

Greedy guarantee. Different works [8, 9] have stud-
ied the performance of the Greedy algorithm [4] for
Problem 1 when the objective is γ-weakly submodu-
lar. In our analysis, we are going to make use of the
following important result from [8].

Lemma 1. For a monotone normalized set function
f : 2V → R+, with submodularity ratio γ ∈ [0, 1] the
Greedy algorithm when run for l steps returns a set
Sl of size l such that

f(Sl) ≥
(

1− e−γ lk
)
f(OPT(k,V )),

where OPT(k,V ) is used to denote the optimal set of
size k, i.e., OPT(k,V ) ∈ arg maxS⊆V,|S|≤k f(S).

3 Algorithm and its Guarantees

We present our Oblivious-Greedy algorithm in Al-
gorithm 1. The algorithm requires a non-negative
monotone set function f : 2V → R+, and the ground
set of items V . It constructs two sets S0 and S1.
The first set S0 is constructed via oblivious selection,
i.e. dβτe items with the individually highest objective
values are selected. Here, β ∈ R+ is an input param-
eter, that together with τ , determines the size of S0

(|S0| = dβτe ≤ k). We provide more information on
this parameter in the next section. The second set S1,
of size k − |S0|, is obtained by running the Greedy
algorithm on the remaining items V \ S0. Finally, the
algorithm outputs the set S = S0 ∪S1 of size k that is
robust against the worst-case removal of τ elements.

Intuitively, the role of S0 is to ensure robustness, as
its elements are selected independently of each other
and have high marginal values, while S1 is obtained
greedily and it is near-optimal on the set V \ S0.

Oblivious-Greedy is simpler than the submodular
algorithms PRo-GREEDY [2] and OSU [1]. Both
of these algorithms construct multiple sets (buckets)
whose number and size depend on the input parame-
ters k and τ . In contrast, Oblivious-Greedy always
constructs two sets, where the first set is obtained by
the fast Oblivious selection.
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Algorithm 1 Oblivious-Greedy algorithm

Require: Set V , k, τ , β ∈ R+ and dβτe ≤ k
Ensure: Set S ⊆ V such that |S| ≤ k
1: S0, S1 ← ∅
2: for i← 0 to dβτe do
3: v ← arg maxv∈V \S0

f({v})
4: S0 ← S0 ∪ {v}
5: S1 ← Greedy(k − |S0|, (V \ S0))
6: S ← S0 ∪ S1

7: return S

For Problem (1) and the weakly submodular objec-
tive, the Greedy algorithm achieves a constant fac-
tor approximation (Lemma 1), while Oblivious selec-
tion achieves (γ/k)-approximation [12]. For the harder
Problem (2), Greedy can fail arbitrarily badly [2].
Interestingly enough, the combination of these two al-
gorithms reflected in Oblivious-Greedy leads to a
constant factor approximation for Problem (2).

3.1 Approximation guarantee

The quantity of interest in this section is the remain-
ing utility after the adversarial removal of elements
f(S \ E∗S), where S is the set of size k returned by
Oblivious-Greedy, and E∗S is the set of size τ chosen
by the adversary, i.e., E∗S ∈ arg minE⊂S,|E|≤τ f(S \E).
Let OPT(k−τ,V \E∗S) denote the optimal solution, of size
k− τ , when the ground set is V \E∗S . The goal in this
section is to compare f(S\E∗S) to f(OPT(k−τ,V \E∗S)).

4

All the omitted proofs from this section can be found
in the supplementary material.

Intermediate results. Before stating our main re-
sult, we provide three lower bounds on f(S \E∗S). For
the returned set S = S0∪S1, we let E0 denote elements
removed from S0, i.e., E0 := E∗S ∩ S0 and similarly
E1 := E∗S ∩ S1. The first lemma is borrowed from [2],
and states that f(S\E∗S) is at least some constant frac-
tion of the utility of the elements obtained greedily in
the second stage.

Lemma 2. For any f(·) (not necessarily submodular),
let µ ∈ [0, 1] be a constant such that f(E1 | (S\E∗S)) =
µf(S1) holds. Then, f(S \ E∗S) ≥ (1− µ)f(S1).

The next lemma generalizes the result obtained in [1,
2], and applies to any non-negative monotone set func-
tion with bipartite subadditivity ratio θ.

Lemma 3. Let θ ∈ [0, 1] be a bipartite subadditivity
ratio defined in Eq. (10). Then f(S \ E∗S) is at least

θf(OPT(k−τ,V \E∗S))− (1− e−
k−|S0|
k−τ )−1f(S1).

4As shown in [1], f(OPT(k−τ,V \E∗
S
)) ≥ f(OPT\E∗OPT),

where OPT is the optimal solution to Problem (2).

In other words, if f(S1) is small compared to the util-
ity of the optimal solution, then f(S \ E∗S) is at least
a constant factor away from the optimal solution.

Next, we present our key lemma that further relates
f(S \E∗S) to the utility of the set S1 with no deletions.

Lemma 4. Let β be a constant such that |S0| = dβτe
and |S0| ≤ k, and let ν̌, α̌ ∈ [0, 1] be a superadditivity
ratio and generalized inverse curvature (Eq. (9) and
Eq. (7), respectively). Finally, let µ be a constant de-
fined as in Lemma 2. Then,

f(S \ E∗S) ≥ (β − 1)ν̌(1− α̌)µf(S1).

Proof. We have:

f(S \ E∗S) ≥ f(S0 \ E0)

≥ ν̌
∑

ei∈S0\E0

f({ei}) (11)

≥ |S0 \ E0|
|E1|

ν̌
∑
ei∈E1

f({ei}) (12)

≥ (β − 1)τ

τ
ν̌
∑
ei∈E1

f({ei}) (13)

≥ (β − 1)ν̌(1− α̌)

×
|E1|∑
i=1

f
(
{ei}|(S \ E∗S) ∪ E(i−1)

1

)
(14)

= (β − 1)ν̌(1− α̌)f (E1|(S \ E∗S)) (15)

= (β − 1)ν̌(1− α̌)µf(S1). (16)

Eq. (11) follows by the superadditivity. Eq. (12)
follows from the way S0 is constructed, i.e. via
Oblivious selection that ensures f({i}) ≥ f({j}) for
every i ∈ S0 \ E0 and j ∈ E1. Eq. (13) follows from
|S0 \ E0| = dβτe − |E0| ≥ βτ − τ = (β − 1)τ , and
|E1| ≤ τ .

To prove Eq. (14), let E1 = {e1, · · · e|E1|}, and let

E
(i−1)
1 ⊆ E1 denote the set {e1, · · · , ei−1}. Also, let

E
(0)
1 = ∅. Eq. (14) then follows from

f({ei}) ≥ (1− α̌)f
(
{ei}|(S \ E∗S) ∪ E(i−1)

1

)
,

which in turns follows from (7) by setting S = {ei}
and Ω = (S \ E∗S) ∪ E(i−1)

1 .

Finally, Eq. (15) follows from f (E1|(S \ E∗S)) =∑
ei∈E1

f
(
{ei}|(S \ E∗S) ∪ E(i−1)

1

)
(telescoping sum)

and Eq. (16) follows from the definition of µ.

Main result. We obtain the main result by examining
the maximum of the obtained lower bounds in Lemma
2, 3 and 4. Note, that all three obtained lower bounds
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Figure 1: Approximation guarantee obtained in Re-
mark 2. The green cross represents the approximation
guarantee when f is submodular (γ = θ = 1).

depend on f(S1). In Lemma 3, we benefit from f(S1)
being small while the opposite is true for Lemma 2
and 4 (both bounds are increasing in f(S1)). By ex-
amining the latter two, we observe that in Lemma 2
we benefit from µ being small (i.e. the utility that we
lose due to E1 is small compared to the utility of the
whole set S1) while the opposite is true for Lemma 4.
By carefully balancing between these cases (see Ap-
pendix C for details) we arrive at our main result.

Theorem 1. Let f : 2V → R+ be a normalized, mono-
tone set function with submodularity ratio γ, bipartite
subadditivity ratio θ, inverse curvature α̌ and super-
additivity ratio ν̌, every parameter in [0, 1]. For a
given budget k and τ = dcke, for some c ∈ (0, 1), the
Oblivious-Greedy algorithm with β s.t. dβτe ≤ k
and β > 1, , returns a set S of size k such that when
k →∞ we have

f(S \ E∗S) ≥
θP
(

1− e−γ
1−βc
1−c

)
1 + P

(
1− e−γ

1−βc
1−c

)f(OPT(k−τ,V \E∗S)).

where P is used to denote (β−1)ν̌(1−α̌)
1+(β−1)ν̌(1−α̌) .

Remark 2. Consider f(·) from Theorem 1 with ν̌ ∈
(0, 1] and α̌ ∈ [0, 1). When τ = o

(
k
β

)
and β ≥ log k

we have:

f(S \ E∗S) ≥
(
θ

1− e−γ

2− e−γ
+ o(1)

)
f(OPT(k−τ,V \E∗S)).

Interpretation. An open question from [2] is whether
a constant factor approximation guarantee is possible
in the linear regime, i.e. when the number of removals
is τ = dcke for some constant c ∈ (0, 1) [2]. In The-
orem 1 we obtain the first asymptotic constant factor
approximation in this regime.

Additionally, when f is submodular, all the param-
eters in the obtained bound are fixed (α̌ = 0 and
γ = θ = 1 due to submodularity) except the superad-
ditivity ratio ν̌ which can take any value in [0, 1]. The
approximation factor improves for greater ν̌, i.e. the

closer the function is to being superadditive. On the
other hand, if f is supermodular then ν̌ = 1 while
α̌, θ, γ are in [0, 1], and the approximation factor im-
proves for larger θ and γ, and smaller α̌.

From Remark 2, when f is submodular, Oblivious-
Greedy achieves an asymptotic approximation fac-
tor of at least 0.387. This matches the approxima-
tion guarantee obtained in [2, 1], while it allows for

a greater number of deletions τ = o
(

k
log k

)
in com-

parison to τ = o
(

k
log3 k

)
and τ = o(

√
k) obtained in

[2] and [1], respectively. Most importantly, our result
holds for a wider range of non-submodular functions.
In Figure 1 we show how the asymptotic approxima-
tion factor changes as a function of γ and θ.

We also obtain an alternative formulation of our main
result, which we present in the following corollary.

Corollary 1. Consider the setting from Theorem 1

and let P := (β−1)ν̌ν
1+(β−1)ν̌(1−ν) . Then we have

f(S\E∗S) ≥
θ2P

(
1− e−γ

1−βc
1−c

)
1 + θP

(
1− e−γ

1−βc
1−c

)f(OPT(k−τ,V \E∗S)).

Additionally, consider f(·) with ν̌, ν ∈ (0, 1]. When

τ = o
(
k
β

)
and β ≥ log k, as k → ∞, we have that

f(S \ E∗S) is at least(
θ2(1− e−γ)

1 + θ(1− e−γ)
+ o(1)

)
f(OPT(k−τ,V \E∗S)).

The key observation is that the approximation fac-
tor depends on ν instead of inverse curvature α̌. The
asymptotic approximation ratio is slightly worse here
compared to Theorem 1. However, depending on the
considered application, it might be significantly harder
to provide bounds for the inverse curvature than bipar-
tite subadditivty ratio, and hence in such cases, this
formulation might be more suitable.

4 Applications

In this section, we consider two important real-world
applications where deletion robust optimization is of
interest. We show that the parameters used in the
statement of our main theoretical result can be ex-
plicitly characterized, which implies that the obtained
guarantees are applicable.

4.1 Robust Support Selection

We first consider the recent results that connect sub-
modularity with concavity [16, 12]. In order to obtain
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bounds for robust support selection for general con-
cave functions, we make use of the theoretical bounds
obtained for Oblivious-Greedy in Corollary 1.

Given a differentiable concave function l : X → R,
where X ⊆ Rd is a convex set, and k ≤ d, the support
selection problem is: max‖x‖0≤k l(x). As in [16], we let
supp(x) = {i : xi 6= 0}, and consider the associated
normalized monotone set function

f(S) := max
supp(x)⊆S,x∈X

l(x)− l(0).

Let Tl(x,y) := l(y) − l(x) − 〈∇l(x),y − x〉. An im-
portant result from [16] can be rephrased as follows:
if l(·) is L-smooth and m-strongly concave then for all
x,y ∈ dom(l), it holds

−m
2
‖y − x‖22 ≥ Tl(x,y) ≥ −L

2
‖y − x‖22,

and f ’s submodularity ratio γ is lower bounded by m
L .

Subsequently, in [12] it is shown that θ can also be
lower bounded by the same ratio m

L .

In this paper, we consider the robust support selection
problem, that is, finding a set of features S ⊆ [d] of size
k that is robust against the deletion of limited number
of features. More formally, the goal is to maximize the
following objective over all S ⊆ [d]:

min
|ES |≤τ,ES⊆S

max
supp(x)⊆S\ES

l(x)− l(0).

By inspecting the bound obtained in Corollary 1, it
remains to bound the (super/sub)additive ratio ν and
ν̌. The first bound follows by combining the result
γ ≥ m

L with Proposition 1: ν ≥ γ ≥ m
L . To prove the

second bound, we make use of the following result.

Proposition 2. The supermodularity ratio γ̌ of the
considered objective f(·) can be lower bounded by m

L .

The second bound follows by combining the result in
Proposition 2 and Proposition 1: ν̌ ≥ γ̌ ≥ m

L .

4.2 Variance Reduction in Robust Batch
Bayesian Optimization

In batch Bayesian optimization, the goal is to optimize
an unknown non-convex function from costly concur-
rent function evaluations [29, 30, 31]. Most often, the
concurrent evaluations correspond to running an ex-
pensive batch of experiments. In the case where ex-
periments can fail, it is beneficial to select a set of
experiments in a robust way.

Different acquisition (i.e. auxiliary) functions have
been proposed to evaluate the utility of candidate

points for the next evaluations of the unknown func-
tion [32]. Recently in [33], the variance reduction ob-
jective was used as the acquisition function – the un-
known function is evaluated at the points that maxi-
mally reduce variance of the posterior distribution over
the given set of points that represent potential maxi-
mizers. We formalize this as follows.

Setup. Let f(x) be an unknown function defined over
a finite domain X = {x1, · · · ,xn}, where xi ∈ Rd.
Once we evaluate the function at some point xi ∈
X , we receive a noisy observation yi = f(xi) + z,
where z ∼ N (0, σ2). In Bayesian optimization, f
is modeled as a sample from a Gaussian process.
We use a Gaussian process with zero mean and ker-
nel function k(x,x′), i.e. f ∼ GP(0, k(x,x′)). Let
S = {e1, · · · , e|S|} ⊆ [n] denote the set of points,

and XS := [xe1 , · · · ,xe|S| ] ∈ R|S|×d and yS :=
[y1, · · · , y|S|] denote the corresponding data matrix
and observations, respectively. The posterior distri-
bution of f given the points XS and observations yS
is again a GP, with the posterior variance given by:

σ2
x|S = k(x,x)− k(x,XS)

(
k(XS ,XS) + σ2I|S|

)−1

×k(XS ,x).

For a given set of potential maximizers M ⊆ [n], the
variance reduction objective is defined as follows:

FM (S) :=
∑

x∈XM

σ2
x − σ2

x|S , (17)

where σ2
x = k(x,x). We show in Appendix D.2.1 that

this objective is not submodular in general.

Finally, our goal is to find a set of points S of size k
that maximizes

min
|ES |≤τ,ES⊆S

∑
x∈XM

σ2
x − σ2

x|S\ES .

In Appendix D.2, we briefly discuss the relevant set
function parameters for this objective function. We
also refer the interested reader to [34] where these are
examined under further structural assumptions.

5 Experimental Results

Optimization performance. For a returned set
S, we measure the performance in terms of
minE⊆S,|E|≤τ f(S \ E). Note that f(S \ E) is a sub-
modular function in E. Finding the minimizer E s.t.
|E| ≤ τ is NP-hard even to approximate [35]. We rely
on the following methods in order to find E of size τ
that degrades the solution as much as possible:

– Greedy adversaries: (i) Greedy Min – iteratively re-
moves elements to reduce the objective value f(S \E)
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as much as possible, and (ii) Greedy Max – iteratively
adds elements from S to maximize the objective f(E).

– Random Greedy adversaries:5 In order to introduce
randomness in the removal process we consider (iii)
Random Greedy Min – iteratively selects a random el-
ement from the top τ elements whose marginal gains
are the highest in terms of reducing the objective
value f(S \ E) and (iv) Stochastic Greedy Min – iter-
atively selects an element, from a random set R ⊆ V ,
with the highest marginal gain in terms of reducing
f(S \E). At every step, R is obtained by subsampling
(|S|/τ) log(1/ε) elements from S.

The minimum objective value f(S \ E) among all ob-
tained sets E is reported. Most of the time, for all
the considered algorithms, Greedy Min finds E that
reduces utility the most.
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Figure 2: Comparison of the algorithms on the linear
regression task.

5.1 Robust Support Selection

Linear Regression. Our setup is similar to the one
in [12]. Each row of the design matrix X ∈ Rn×d is
generated by an autoregressive process,

Xi,t+1 =
√

1− α2Xi,t + αεi,t, (18)

where εi,t is i.i.d. standard Gaussian with variance
α2 = 0.5. We use n = 800 training data points
and d = 1000. An additional 2400 points are used
for testing. We generate a 100-sparse regression vec-
tor by selecting random entries of ω and set them

ωs = (−1)Bern(1/2) ×
(

5
√

log d
n + δs

)
, where δs is a

5The random adversaries are inspired by [36] and [37].
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Figure 3: Logistic regression task with synth. dataset.

standard i.i.d. Gaussian noise. The target is given
by y = Xω + z, where ∀i ∈ [n], zi ∼ N (0, 5).
We compare the performance of Oblivious-Greedy
against: (i) robust algorithms (in blue) such as
Oblivious, PRo-GREEDY [2], OSU [1], (ii)
greedy-type algorithms (in red) such as Greedy,
Stochastic-Greedy [37], Random-Greedy [36],
Orthogonal-Matching-Pursuit. We require β >
1 for our asymptotic results to hold, but we found
out that in practice (small k regime) β ≤ 1 usu-
ally gives the best performance. We use Oblivious-
Greedy with β = 1 unless stated otherwise.

The results are shown in Fig. 6. Since PRo-GREEDY
and OSU only make sense in the regime where τ
is relatively small, the plots show their performance
only for feasible values of k. It can be observed that
Oblivious-Greedy achieves the best performance
among all the methods in terms of both training er-
ror and test score. Also, the greedy-type algorithms
become less robust for larger values of τ .

Logistic Regression. We compare the performance
of Oblivious-Greedy vs. Greedy and Oblivious
selection on both synthetic and real-world data.

– Synthetic data: We generate a 100-sparse ω by let-
ting ωs = (−1)Bern(1/2) × δs, with δs ∼ Unif([−1, 1]).
The design matrix X is generated as in (18), with
α2 = 0.09. We set d = 200,and use n = 600 points
for training and additional 1800 points for testing.
The label of the i-th data point X(i,·) is set to 1
if 1/(1 + exp(X(i,·)β)) > 0.5 and 0 otherwise. The
results are shown in Fig. 3. We can observe that
Oblivious-Greedy outperforms other methods both
in terms of the achieved objective value and general-
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ization error. We also note that the performance of
Greedy decays significantly when τ increases.

– MNIST: We consider the 10-class logistic regres-
sion task on the MNIST [38] dataset. In this exper-
iment, we set β = 0.5 in Oblivious-Greedy, and
we sample 200 images for each digit for the training
phase and 100 images of each for testing. The re-
sults are shown in Fig. 4. It can be observed that
Oblivious-Greedy has a distinctive advantage over
Greedy and Oblivious, while when τ increases the
performance of Greedy decays significantly and more
robust Oblivious starts to outperform it.
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Figure 4: Logistic regression with MNIST dataset.

5.2 Robust Batch Bayesian Optimization via
Variance Reduction

Setup. We conducted the following synthetic experi-
ment. A design matrix X of size 600× 20 is obtained
via the autoregressive process from (18). The function
values at these points are generated from a GP with
3/2-Mátern kernel [39] with both lengthscale and out-
put variance set to 1.0. The samples of this function
are corrupted by Gaussian noise, σ2 = 1.0. Objective
function used is the variance reduction (Eq. (17)). Fi-
nally, half of the points randomly chosen are selected
in the set M , while the other half is used in the selec-
tion process. We use β = 0.5 in our algorithm.

Results. In Figure 5 (a), (b), (c), the performance
of all three algorithms is shown when τ is fixed to
50. Different figures correspond to different α val-
ues. We observe that when α = 0.1, Greedy outper-
forms Oblivious for most values of k, while Oblivi-
ous clearly outperforms Greedy when α = 0.2. For
all presented values of α, Oblivious-Greedy outper-
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Figure 5: Comparison of the algorithms on the vari-
ance reduction task.

forms both Greedy and Oblivious selection. For
larger values of α, the correlation between the points
becomes small and consequently so do the objective
values. In such cases, all three algorithms perform
similarly. In Figure 5 (d), we show how the perfor-
mance of all three algorithms decreases as the number
of removals increases. When the number of removals
is small both Greedy and our algorithm perform sim-
ilarly, while as the number of removals increases the
performance of Greedy drops more rapidly.

6 Conclusion

We have presented a new algorithm Oblivious-
Greedy that achieves constant-factor approximation
guarantees for the robust maximization of monotone
non-submodular objectives. The theoretical guaran-
tees hold for general τ = ck for some c ∈ (0, 1), which
resolves the important question posed in [1, 2]. We
have also obtained the first robust guarantees for ro-
bust support selection objective. In various experi-
ments, we have demonstrated the robust performance
of Oblivious-Greedy by showing that it outper-
forms both Oblivious selection and Greedy, and
hence achieves the best of both worlds.
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(Ilija Bogunovic†, Junyao Zhao† and Volkan Cevher, AISTATS 2018)

A Organization of the Appendix

– Appendix B: Proofs from Section 2
– Appendix C: Proofs of the Main Result (Section 3)
– Appendix D: Proofs from Section 4
– Appendix E: Additional experiments

B Proofs from Section 2

B.1 Proof of Proposition 1

Proof. We prove the following relations:

• ν ≥ γ, ν̌ ≥ γ̌:
By setting S = ∅ in both Eq. (4) and Eq. (5), we obtain ∀S ⊆ V :∑

i∈S
f({i}) ≥ γf(S), (19)

and
f(S) ≥ γ̌

∑
i∈S

f({i}). (20)

The result follows since, by definition of ν and ν̌, they are the largest scalars such that Eq. (19) and Eq. (20)
hold, respectively.

• γ ≥ 1 − α̌, γ̌ ≥ 1 − α:
Let S,Ω ⊆ V be two arbitrary disjoint sets. We arbitrarily order elements of Ω = {e1, · · · , e|Ω|} and we let
Ωj−1 denote the first j − 1 elements of Ω. We also let Ω0 be an empty set.

By the definition of α̌ (see Eq. (7)) we have:

|Ω|∑
j=1

f ({ej}|S) =

|Ω|∑
j=1

f ({ej}|S ∪ {ej} \ {ej})

≥
|Ω|∑
j=1

(1− α̌)f ({ej}|S ∪ {ej} \ {ej} ∪ Ωj−1)

= (1− α̌)f (Ω|S) , (21)

where the last equality is obtained via telescoping sums.

Similarly, by the definition of α (see Eq. (6)) we have:

(1− α)

|Ω|∑
j=1

f ({ej}|S) =

|Ω|∑
j=1

(1− α)f ({ej}|S ∪ {ej} \ {ej})

≤
|Ω|∑
j=1

f ({ej}|S ∪ {ej} \ {ej} ∪ Ωj−1)

= f (Ω|S) . (22)

Because S and Ω are arbitrary disjoint sets, and both γ and γ̌ are the largest scalars such that for all disjoint

sets S,Ω ⊆ V the following holds
∑|Ω|
j=1 f({ej}|S) ≥ γf(Ω|S) and γ̌

∑|Ω|
j=1 f ({ej}|S) ≤ f (Ω|S), it follows

from Eq. (21) and Eq. (22), respectively, that γ ≥ 1− α̌ and γ̌ ≥ 1− α.
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B.2 Proof of Remark 1

Proof. Consider any set S ⊆ V , and A and B such that A ∪B = S, A ∩B = ∅. We have

f(A) + f(B)

f(S)
≥
ν̌
∑
i∈A f({i}) + ν̌

∑
i∈B f({i})

f(S)
=
ν̌
∑
i∈S f({i})
f(S)

≥ νν̌,

where the first and second inequality follow by the definition of ν and ν̌ (Eq. (8) and Eq. (9)), respectively.
By the definition (see Eq. (10)), θ is the largest scalar such that f(A) + f(B) ≥ θf(S) holds, hence, it follows
θ ≥ νν̌.

C Proofs of the Main Result (Section 3)

C.1 Proof of Lemma 2

We reproduce the proof from [2] for the sake of completeness.

Proof.

f(S \ E∗S) = f(S)− f(S) + f(S \ E∗S)

= f(S0 ∪ S1) + f(S \ E0)− f(S \ E0)− f(S) + f(S \ E∗S)

= f(S1) + f(S0 | S1) + f(S \ E0)− f(S)− f(S \ E0) + f(S \ E∗S)

= f(S1) + f(S0 | (S \ S0)) + f(S \ E0)− f(E0 ∪ (S \ E0))− f(S \ E0) + f(S \ E∗S)

= f(S1) + f(S0 | (S \ S0))− f(E0 | (S \ E0))− f(S \ E0) + f(S \ E∗S)

= f(S1) + f(S0 | (S \ S0))− f(E0 | (S \ E0))− f(E1 ∪ (S \ E∗S)) + f(S \ E∗S)

= f(S1) + f(S0 | (S \ S0))− f(E0 | (S \ E0))− f(E1 | S \ E∗S)

= f(S1)− f(E1 | S \ E∗S) + f(S0 | (S \ S0))− f(E0 | (S \ E0))

≥ (1− µ)f(S1), (23)

where we used S = S0∪S1, E∗S = E0∪E1. and (23) follows from monotonicity, i.e., f(S0 | (S \S0))−f(E0 | (S \
E0)) ≥ 0 (due to E0 ⊆ S0 and S \ S0 ⊆ S \ E0), along with the definition of µ.

C.2 Proof of Lemma 3

Proof. We start by defining S′0 := OPT(k−τ,V \E0) ∩ (S0 \ E0) and X := OPT(k−τ,V \E0) \ S′0.

f(S0 \ E0) + f(OPT(k−τ,V \S0)) ≥ f(S′0) + f(X) (24)

≥ θf(OPT(k−τ,V \E0)) (25)

≥ θf(OPT(k−τ,V \E∗S)), (26)

where (24) follows from monotonicity as S′0 ⊆ (S0 \E0) and (V \ S0) ⊆ (V \E0). Eq. (25) follows from the fact
that OPT(k−τ,V \E0) = S′0 ∪X and the bipartite subadditive property (10). The final equation follows from the
definition of the optimal solution and the fact that E∗S = E0 ∪ E1.

By rearranging and noting that f(S \E∗S) ≥ f(S0 \E0) due to (S0 \E0) ⊆ (S \E∗S) and monotonicity, we obtain

f(S \ E∗S) ≥ θf(OPT(k−τ,V \E∗S))− f(OPT(k−τ,V \S0)).

C.3 Proof of Theorem 1

Before proving the theorem we outline the following auxiliary lemma:
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Lemma 5 (Lemma D.2 in [2]). For any set function f , sets A,B, and constant α > 0, we have

max{αf(A), βf(B)− f(A)} ≥
(

α

1 + α

)
βf(B). (27)

Next, we prove the main theorem.

Proof. First we note that β should be chosen such that the following condition holds |S0| = dβτe ≤ k. When
τ = dcke for c ∈ (0, 1) and k →∞ the condition β < 1

c suffices.

We consider two cases, when µ = 0 and µ 6= 0. When µ = 0, from Lemma 2 we have

f(S \ E∗S) ≥ f(S1) (28)

On the other hand, when µ 6= 0, by Lemma 2 and 4 we have

f(S \ E∗S) ≥ max{(1− µ)f(S1), (β − 1)ν̌(1− α̌)µf(S1)}

≥ (β − 1)ν̌(1− α̌)

1 + (β − 1)ν̌(1− α̌)
f(S1). (29)

By denoting P := (β−1)ν̌(1−α̌)
1+(β−1)ν̌(1−α̌) we observe that P ∈ [0, 1) once β ≥ 1. Hence, by setting β ≥ 1 and taking the

minimum between two bounds in Eq. (29) and Eq. (28) we conclude that Eq. (29) holds for any µ ∈ [0, 1].

By combining Eq. (29) with Lemma 1 we obtain

f(S \ E∗S) ≥ P
(

1− e−γ
k−dβτe
k−τ

)
f(OPT(k−τ,V \S0)). (30)

By further combining this with Lemma 3 we have

f(S \ E∗S) ≥ max{θf(OPT(k−τ,V \E∗S))− f(OPT(k−τ,V \S0)), P
(

1− e−γ
k−dβτe
k−τ

)
f(OPT(k−τ,V \S0))}

≥ θ
P
(

1− e−γ
k−dβτe
k−τ

)
1 + P

(
1− e−γ

k−dβτe
k−τ

)f(OPT(k−τ,V \E∗S)) (31)

where the second inequality follows from Lemma 5. By plugging in τ = dcke we further obtain

f(S \ E∗S) ≥ θ
P
(

1− e−γ
k−βdcke−1

(1−c)k

)
1 + P

(
1− e−γ

k−βdcke−1
(1−c)k

)f(OPT(k−τ,V \E∗S))

≥ θ
P

(
1− e−γ

1−βc− 1
k
− β
k

1−c

)
1 + P

(
1− e−γ

1−βc− 1
k
− β
k

1−c

)f(OPT(k−τ,V \E∗S))

k→∞−−−−→
θP
(

1− e−γ
1−βc
1−c

)
1 + P

(
1− e−γ

1−βc
1−c

)f(OPT(k−τ,V \E∗S)).

Finally, Remark 2 follows from Eq. (30) when τ ∈ o
(
k
β

)
and β ≥ log k (note that the condition |S0| = dβτe ≤ k

is thus satisfied), as k → ∞, we have both k−dβτe
k−τ → 1 and P = (β−1)ν̌(1−α̌)

1+(β−1)ν̌(1−α̌) → 1, when ν̌ ∈ (0, 1] and

α̌ ∈ [0, 1).



Robust Maximization of Non-Submodular Objectives

C.4 Proof of Corollary 1

To prove this result we need the following two lemmas that can be thought of as the alternative to Lemma 2
and 4.

Lemma 6. Let µ′ ∈ [0, 1] be a constant such that f(E1) = µ′f(S1) holds. Consider f(·) with bipartite subaddi-
tivity ratio θ ∈ [0, 1] defined in Eq. (4). Then

f(S \ E∗S) ≥ (θ − µ′)f(S1). (32)

Proof. By the definition of θ, f(S1 \ E1) + f(E1) ≥ θf(S1). Hence,

f(S \ E∗S) ≥ f(S1 \ E1)

≥ θf(S1)− f(E1)

= (θ − µ′)f(S1).

Lemma 7. Let β be a constant such that |S0| = dβτe and |S0| ≤ k, and let ν̌, ν ∈ [0, 1] be superadditivity and
subadditivity ratio (Eq. (9) and Eq. (8), respectively). Finally, let µ′ be a constant defined as in Lemma 6. Then,

f(S \ E∗S) ≥ (β − 1)ν̌νµ′f(S1). (33)

Proof. The proof follows that of Lemma 4, with two modifications. In Eq. (34) we used the subadditive property
of f(·), and Eq. (35) follows by the definition of µ′.

f(S \ E∗S) ≥ f(S0 \ E0)

≥ ν̌
∑

ei∈S0\E0

f({ei})

≥ |S0 \ E0|
|E1|

ν̌
∑
ei∈E1

f({ei})

≥ (β − 1)τ

τ
ν̌
∑
ei∈E1

f({ei})

≥ (β − 1)ν̌νf (E1) (34)

= (β − 1)ν̌νµ′f(S1). (35)

Next we prove the main corollary. The proof follows the steps of the proof from Appendix C.3, except that here
we make use of Lemma 6 and 7.

Proof. We consider two cases, when µ′ = 0 and µ′ 6= 0. When µ′ = 0, from Lemma 6 we have

f(S \ E∗S) ≥ θf(S1).

On the other hand, when µ′ 6= 0, by Lemma 6 and 7 we have

f(S \ E∗S) ≥ max{(θ − µ′)f(S1), (β − 1)ν̌νµ′f(S1)}

≥ θ (β − 1)ν̌ν

1 + (β − 1)ν̌ν
f(S1). (36)

By denoting P := (β−1)ν̌ν
1+(β−1)ν̌ν and observing that P ∈ [0, 1) once β ≥ 1, we conclude that Eq. (36) holds for any

µ′ ∈ [0, 1] once β ≥ 1.

By combining Eq. (36) with Lemma 1 we obtain

f(S \ E∗S) ≥ θP
(

1− e−γ
k−dβτe
k−τ

)
f(OPT(k−τ,V \S0)). (37)
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By further combining this with Lemma 3 we have

f(S \ E∗S) ≥ max{θf(OPT(k−τ,V \E∗S))− f(OPT(k−τ,V \S0)), θP
(

1− e−γ
k−dβτe
k−τ

)
f(OPT(k−τ,V \S0))}

≥
θ2P

(
1− e−γ

k−dβτe
k−τ

)
1 + θP

(
1− e−γ

k−dβτe
k−τ

)f(OPT(k−τ,V \E∗S)), (38)

where the second inequality follows from Lemma 5. By plugging in τ = dcke in the last equation and by letting
k →∞ we arrive at:

f(S \ E∗S) ≥
θ2P

(
1− e−γ

1−βc
1−c

)
1 + θP

(
1− e−γ

1−βc
1−c

)f(OPT(k−τ,V \E∗S)).

Finally, from Eq. (38), when τ ∈ o
(
k
β

)
and β ≥ log k, as k →∞, we have both k−dβτe

k−τ → 1 and P = (β−1)ν̌ν
1+(β−1)ν̌ν →

1 (when ν, ν̌ ∈ (0, 1]). It follows

f(S \ E∗S)
k→∞−−−−→ θ2(1− e−γ)

1 + θ(1− e−γ)
f(OPT(k−τ,V \E∗S)).

D Proofs from Section 4

D.1 Proof of Proposition 2

Proof. The goal is to prove: γ̌ ≥ m
L .

Let S ⊆ [d] and Ω ⊆ [d] be any two disjoint sets, and for any set A ⊆ [d] let x(A) = arg maxsupp(x)⊆A,x∈X l(x).

Moreover, for B ⊆ [d] let x
(A)
B denote those coordinates of vector x(A) that correspond to the indices in B.

We proceed by upper bounding the denominator and lower bounding the numerator in (5). By definition of x(S)

and strong concavity of l(·),

l(x(S∪{i}))− l(x(S)) ≤ 〈∇l(x(S)),x(S∪{i}) − x(S)〉 − m

2

∥∥∥x(S∪{i}) − x(S)
∥∥∥2

≤ max
v:v(S∪{i})c=0

〈∇l(x(S)),v − x(S)〉 − m

2

∥∥∥v − x(S)
∥∥∥2

=
1

2m

∥∥∥∇l(x(S))i

∥∥∥2

where the last equality follows by plugging in the maximizer v = x(S) + 1
m∇l(x

(S))i. Hence,

∑
i∈Ω

(
l(x(S∪{i}))− l(x(S))

)
≤
∑
i∈Ω

1

2m

∥∥∥∇l(x(S))i

∥∥∥2

=
1

2m

∥∥∥∇l(x(S))Ω

∥∥∥2

.

On the other hand, from the definition of x(S∪Ω) and due to smoothness of l(·) we have

l(x(S∪Ω))− l(x(S)) ≥ l(x(S) +
1

L
∇l(x(S))Ω)− l(x(S))

≥ 〈∇l(x(S)),
1

L
∇l(x(S))Ω〉 −

L

2

∥∥∥∥ 1

L
∇l(x(S))Ω

∥∥∥∥2

=
1

2L

∥∥∥l(x(S))Ω

∥∥∥2

.
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It follows that
l(x(S∪Ω))− l(x(S))∑

i∈Ω

(
l(x(S∪{i}))− l(x(S))

) ≥ m

L
, ∀ disjoint S,Ω ⊆ [d]

We finish the proof by noting that γ̌ is the largest constant for the above statement to hold.

D.2 Variance Reduction in GPs

D.2.1 Non-submodularity of Variance Reduction

The goal of this section is to show that the GP variance reduction objective is not submodular in general.
Consider the following PSD kernel matrix:

K =

 1
√

1− z2 0√
1− z2 1 z2

0 z2 1

 .
We consider a single x = {3} (i.e. M is a singleton) that corresponds to the third data point. The objective is
as follows:

F (i|S) = σ2
{3}|S − σ

2
{3}|S∪i.

The submodular property implies F ({1}) ≥ F ({1}|{2}). We have:

F ({1}) = σ2
{3} − σ

2
{3}|{1}

= 1−K({3}, {3})−K({3}, {1})(K({1}, {1}) + σ2)−1K({1}, {3})
= 1− 1 + 0 = 0,

and

F ({2}) = σ2
{3} − σ

2
{3}|{2}

= 1−K({3}, {3})−K({3}, {2})(K({2}, {2}) + σ2)−1K({2}, {3})

= 1− (1− z2(1 + σ2)−1z2) =
z4

1 + σ2
,

and

F ({1, 2}) = σ2
{3} − σ

2
{3}|{1,2}

= 1−K({3}, {3}) + [K({3}, {1}),K({3}, {2})]
[
1 + σ2,K({2}, {1})
K({1}, {2}), 1 + σ2

]−1 [
K({1}, {3})
K({2}, {3})

]
= 1− 1 + [0, z2]

[
1 + σ2,

√
1− z2

√
1− z2, 1 + σ2

]−1 [
0
z2

]
=

z4(1 + σ2)

(1 + σ2)2 − (1− z2)
.

We obtain,

F ({1}|{2}) = F ({1, 2})− F ({2})

=
z4

(1 + σ2)− (1− z2)(1 + σ2)−1
− z4

1 + σ2
.

When z ∈ (0, 1), F ({1}|{2}) is strictly greater than 0, and hence greater than F ({1}). This is in contradiction
with the submodular property which implies F ({1}) ≥ F ({1}|{2}).
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D.2.2 Variance Reduction Curvature

In this section, we are interested in lower bounding the following ratio: f({i}|S\{i}∪Ω)
f({i}|S\{i}) .

Let kmax ∈ R+ be the largest variance, i.e. k(xi,xi) ≤ kmax for every i. Consider the case when M is a singleton
set:

f(i|S) = σ2
x|S − σ

2
x|S∪i.

By using Ω = {i} in Eq. (39), we can rewrite f(i|S) as

f(i|S) = a2
i,SB

−1
i ,

where ai,S , Bi ∈ R+, and are given by:

ai,S = k(x,xi)− k(x,XS)(k(XS ,XS) + σ2I)−1k(XS ,xi)

and
Bi = σ2 + k(xi,xi)− k(xi,XS)(k(XS ,XS) + σ2I)−1k(XS ,xi).

By using the fact that k(xi,xi) ≤ kmax, for every i and S, we can upper bound Bi by σ2 + kmax (note that
k(xi,xi)− k(xi,XS)(k(XS ,XS) +σ2I)−1k(XS ,xi) ≥ 0 as variance cannot be negative), and lower bound by σ2.
It follows that for every i and S we have:

a2
i,S

σ2 + kmax
≤ f(i|S) ≤

a2
i,S

σ2
.

Therefore,

f({i}|S \ {i} ∪ Ω)

f({i}|S \ {i})
≥ σ2

σ2 + kmax

a2
i,S\{i}∪Ω

a2
i,S\{i}

, ∀S,Ω ⊆ V, i ∈ S \ Ω.

Hence, the curvature of the variance reduction objective depends on the following ratio
a2
i,S\{i}∪Ω

a2
i,S\{i}

. Under some

further structural assumption this ratio can be bounded. We refer the interested reader to [34] for further details.

D.2.3 Alternative GP variance reduction form

Here, the goal is to show that the variance reduction can be written as

F (Ω|S) = σ2
x|S − σ

2
x|S∪Ω = aB−1aT , (39)

where a ∈ R1×|Ω\S|
+ , B ∈ R|Ω\S|×|Ω\S|+ and are given by:

a := k(x,XΩ\S)− k(x,XS)(k(XS ,XS) + σ2I)−1k(XS ,XΩ\S),

and
B := σ2I + k(XΩ\S ,XΩ\S)− k(XΩ\S ,XS)(k(XS ,XS) + σ2I)−1k(XS ,XΩ\S).

This form is used in the proof in Appendix D.2.2.

Proof. Recall the definition of the posterior variance:

σ2
x|S = k(x,x)− k(x,XS)

(
k(XS ,XS) + σ2I|S|

)−1
k(XS ,x).

We have

F (Ω|S) = σ2
x|S − σ

2
x|S∪Ω

= k(x,XS∪Ω)
(
k(XS∪Ω,XS∪Ω) + σ2I|Ω∪S|

)−1
k(XS∪Ω,x)− k(x,XS)

(
k(XS ,XS) + σ2I|S|

)−1
k(XS ,x)

= [m1,m2]

[
A11,A12

A21,A22

]−1 [
mT

1

mT
2

]
−m1A

−1
11 mT

1 ,
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where we use the following notation:

m1 := k(x,XS),

m2 := k(x,XΩ\S),

A11 := k(XS ,XS) + σ2I|S|,

A12 := k(XS ,XΩ\S),

A21 := k(XΩ\S , XS),

A22 := k(XΩ\S ,XΩ\S) + σ2I|Ω\S|.

By using the inverse formula [40, Section 9.1.3] we obtain:

F (Ω|S) = [m1,m2]

[
A−1

11 + A−1
11 A12B

−1A21A
−1
11 , −A−1

11 A12B
−1

−B−1A21A
−1
11 , B−1

] [
mT

1

mT
2

]
−m1A

−1
11 mT

1 ,

where
B := A22 −A21A

−1
11 A12.

Finally, we obtain:

F (Ω|S) = m1A
−1
11 mT

1 + m1A
−1
11 A12B

−1A21A
−1
11 mT

1 −m2B
−1A21A

−1
11 mT

1

−m1A
−1
11 A12B

−1mT
2 + m2B

−1mT
2 −m1A

−1
11 mT

1

= m1A
−1
11 A12B

−1(A21A
−1
11 mT

1 −mT
2 )−m2B

−1(A21A
−1
11 mT

1 −mT
2 )

= (m1A
−1
11 A12 −m2)B−1(A21A

−1
11 mT

1 −mT
2 )

= (m2 −m1A
−1
11 A12)B−1(mT

2 −A21A
−1
11 mT

1 ).

By setting

a := m2 −m1A
−1
11 A12

= k(x,XΩ\S)− k(x,XS)(k(XS ,XS) + σ2I)−1k(XS ,XΩ\S)

and

aT := mT
2 −A21A

−1
11 mT

1

= k(XΩ\S ,x)− k(XΩ\S ,XS)(k(XS ,XS) + σ2I)−1k(XS ,x),

we have
F (Ω|S) = aB−1aT ,

where
B = σ2I|Ω\S| + k(XΩ\S ,XΩ\S)− k(XΩ\S ,XS)(k(XS ,XS) + σ2I|S|)

−1k(XS ,XΩ\S).
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E Additional Experiments
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Figure 6: Additional experiments for comparison of the algorithms on support selection task.


