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Abstract

In the multi-armed bandit literature, the multi-bandit best-arm identification problem consists of determining each best arm in a
number of disjoint groups of arms, with as few total arm pulls as possible. In this paper, we introduce a variant of the multi-bandit
problem with overlapping groups, and present two algorithms for this problem based on successive elimination and lower/upper
confidence bounds (LUCB). We bound the number of total arm pulls required for high-probability best-arm identification in every
group, and we complement these bounds with a near-matching algorithm-independent lower bound. In addition, we show that a
specific choice of the groups recovers the top-k ranking problem.

I. INTRODUCTION

The multi-armed bandit (MAB) problem [1] provides a versatile framework for sequentially searching for high-reward
actions, with applications including clinical trials [2], online advertising [3], adaptive routing [4], and portfolio design [5].

A variation of the MAB problem known as multi-bandit best-arm identification consists of finding the best arm in each of
a number of separate groups of arms, while pulling the minimal total number of arms possible [6]. As a motivating example,
consider a scenario where each arm corresponds to a product, and pulling an arm corresponds to testing how much it is liked
by some user(s). Then the multi-bandit problem corresponds to searching for the top products among multiple separate types
(e.g., TV, phone, music player, etc.).

Consider a variation of this example in which we not only want to find the top product of each type, but also the top products
among several overlapping categories, e.g., top product under $100, top product from each brand name, top newly-released
product, and so on. This motivates the overlapping multi-bandit best arm identification problem (or overlapping multi-bandit
problem for short), which we introduce and study in this paper. In a nutshell, we seek to find each best arm in a number of
overlapping groups using as few total arm pulls as possible; see Section II for a formal description. Beyond the preceding
example, the consideration of overlapping groups is of considerable interest when arms correspond to users, since categories
such as gender, age, marital status, etc. invariably exhibit overlap.

A. Related Work

The literature on theory and algorithms for MAB problems is extensive; see [1], [7] for recent overviews. One of the main
defining features of such problems is the distinction between stochastic vs. adversarial rewards; this paper focuses exclusively
on the former.

Starting with early works such as [8], particular attention has been paid to cumulative regret measures. In contrast, this paper
is more closely related to best arm identification, which has been solved using elimination methods [9]–[11], upper confidence
bound (UCB) algorithms [12], [13], and lower/upper confidence bound (LUCB) algorithms [14], often with near-matching
lower bounds [10], [12], [15]. A survey comparing these algorithmic approaches is given in [16].

A closely related problem is top-k identification [11], [14], for which recent developments have included near-tight bounds
via successive elimination [17] and an LUCB-type algorithm with similar theoretical guarantees [18]. There is also a growing
literature on active top-k ranking [19], [20] (i.e., not only identifying the top k arms, but also their order). In this setting, the
emphasis has predominantly been on pairwise comparisons rather than regular bandit arm pulls, with a recent exception being
[21].

To our knowledge, the first regret bounds for the multi-bandit problem were given in [6], adopting a “gap-based exploration”
approach based on confidence bounds. A similar bound was obtained via a much simpler analysis using successive elimination
[11], which also has the additional advantage of being parameter-free (while [6] requires knowledge of a certain complexity
parameter).

B. Contributions

We introduce a novel variant of the multi-bandit problem with overlapping groups, provide two algorithms for solving
this problem with rigorous guarantees upper bounding the number of arms pulled, and give a near-matching lower bound.
Specifically, we first consider a simple successive elimination algorithm, and then a variant of LUCB [14] adapted to our
setting.

Our setting trivially captures the regular multi-bandit problem, for which we recover similar results to those of [6], [11],
as well a near-matching lower bound. In addition, we show that the top-k ranking problem with regular bandit feedback is a
special case of our framework, and discuss the connection between this special case and the coarse ranking framework of [21].
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II. PROBLEM SETUP

We consider a MAB setting with n arms having reward distributions (ν1, . . . , νn), the corresponding means of which are
(µ1, . . . , µn) with µj ∈ (0, 1). It is assumed that each νj is sub-Gaussian1 with parameter σ ≤ 1

2 ; as noted in [16], this
accounts for all distributions whose support is a subset of [0, 1] (e.g., Bernoulli).

As indicated above, the key novelty of our setting is allowing for general possibly-overlapping groups. Specifically, there
is a known set of groups G, where each G ∈ G is a subset of {1, . . . , n}. The number of groups is denoted by m, and the
groups are denoted by G1, . . . , Gm.

An algorithm for the overlapping multi-bandit problem iteratively pulls arms at times indexed by t = 1, 2, etc. At each time,
the algorithm chooses an arm jt and observes an independent reward Xjt,Tj(t) ∼ νjt , where Tj(t) is the number of pulls of
arm j up to time t. The empirical estimate of µj after Tj(t) pulls of arm j is denoted by µ̂j,Tj(t) = 1

Tj(t)

∑Tj(t)
s=1 Xj,s.

At any given time, the algorithm may choose to stop and output m recommendations ĵ(G1), . . . , ĵ(Gm) as estimates of the
best arms in the groups. The time at which this occurs is called the stopping time, and we would like it to be as small as
possible. In addition, we seek the correct identification of the best arm in each group G ∈ G. Writing the true best arm of
group G (which is assumed to be unique) as

j∗(G) = arg max
j∈G

µj , (1)

the error probability is given by

Pe = P
[ ⋃
G∈G

{
ĵ(G) 6= j∗(G)

}]
. (2)

We are interested in algorithms that achieve Pe ≤ δ with guarantees on the total number of arm pulls (i.e., the stopping time),
henceforth denoted by T .

Stochastic MAB problems invariably contain fundamental “gaps” between certain arms that dictate the required number of
arm pulls. In our setting, these gaps are defined as follows:

∆j = min

{
min

G : j∈G,j=j∗(G)

(
µj − µjsec(G)

)
, min
G : j∈G,j 6=j∗(G)

(
µj∗(G) − µj

)}
≥ 0, (3)

where jsec(G) is the second-best arm in G, and the minimum of an empty set is infinity. Without loss of generality, we assume
that each arm is in at least one group, and that all groups contain at least two arms; this implies that each ∆j is well-defined
and finite.

The assumption that j∗(G) is uniquely defined in (1) is equivalent to requiring ∆j > 0 for all j = 1, . . . , n. We henceforth
refer to any such instance as identifiable, and to all other instances as non-identifiable. We assume identifiability in all of our
main results.

A. Auxiliary Results

Here we review some useful auxiliary results from the MAB literature that we will use in our analysis.
Early works on multi-armed bandits relied on basic concentration bounds such as Hoeffding’s inequality to establish that

the empirical mean of an arm approaches the true mean as it is pulled more. To improve certain logarithmic factors in the
final results, we adopt a more recent approach based on the law of iterated logarithm [22].

Lemma 1. (Law of iterated logarithm [16, Lemma 1]) Let Z1, Z2, . . . be i.i.d. sub-Gaussian random variables with mean
µ ∈ R and parameter σ ≤ 1

2 . For any ε ∈ (0, 1) and δ ∈
(
0, 1

e log(1+ε)
)
, it holds with probability at least 1− 2+ε

ε/2

(
δ

log(1+ε)

)1+ε

that ∣∣∣∣1t
t∑

s=1

Zs − µ
∣∣∣∣ ≤ U(t, δ), ∀t ≥ 1, (4)

where

U(t, δ) = (1 +
√
ε)

√
1 + ε

2t
log

log(1 + ε)t

δ
. (5)

In accordance with this result, we define the following upper and lower confidence bounds at time t:

UCBt(j) = µ̂j,Tj(t) + U(Tj(t), δ/n) (6)

LCBt(j) = µ̂j,Tj(t) − U(Tj(t), δ/n), (7)

where the division of δ by n is in accordance with a union bound over the n arms.

1A zero-mean random variable Z is sub-Gaussian with parameter σ if E[eλZ ] ≤ exp
(
λ2σ2

2

)
. For a random variable Z with a non-zero mean, we use

the terminology sub-Gaussian to mean that this property holds for Z − E[Z].
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Corollary 1. (Confidence bounds) If the arm reward distributions satisfy the conditions of Lemma 1, then for any ε ∈ (0, 1)

and δ ∈
(
0, 1

e log(1 + ε)
)
, it holds with probability at least 1− 2+ε

ε/2

(
δ

log(1+ε)

)1+ε
that

LCBt(j) ≤ µj ≤ UCBt(j), ∀j ∈ {1, . . . , n}, t ≥ 1. (8)

Proof. This follows by applying Lemma 1 for each j = 1, . . . , n with Zs = Xj,s and δ/n in place of δ, and taking the union
bound over j. Note that after the union bound, n · 2+ε

ε/2

( δ/n
log(1+ε)

)1+ε ≤ 2+ε
ε/2

(
δ

log(1+ε)

)1+ε
.

In the analysis of the algorithms, we will need to “invert” U(t, δ) in the sense of establishing how large t needs to be to
upper bound it by a certain threshold. Such an inversion is given as follows.

Lemma 2. (Inversion of U(t, δ) [16, Eq. (4)]) The quantity U(t, δ) defined in (5) is such that, for any positive numbers
(δ, n,∆) with ∆ ∈ (0, 1), we have

min
{
k : U(k, δ/n) ≤ ∆

4

}
≤ 2γ

∆2
log

2 log
(
γ(1 + ε)∆−2

)
δ/n

, (9)

where γ = 8(1 +
√
ε)2(1 + ε).

Finally, the following lemma relating the number of arm pulls of two different instances permits a simple and elegant
approach to establishing lower bounds. Here and subsequently, we let Nj denote the total number of times arm j has been
pulled upon termination, so that T =

∑n
j=1Nj .

Lemma 3. (Relating two instances [15, Lemma 1]) Let ν = (ν1, . . . , νn) and ν′ = (ν′1, . . . , ν
′
n) be two different bandit

instances such that for all j = 1, . . . , n, the distributions νj and ν′j are mutually absolutely continuous. For any almost-surely
finite stopping time σ, and any event A depending only on the history up to the stopping time, we have

n∑
j=1

Eν [Nj(σ)]D(νj‖ν′j) ≥ d(Pν [A],Pν′ [A]), (10)

where D(νj‖ν′j) = Eνj
[

log
νj(X)
ν′j(X)

]
is the KL divergence, and d(a, b) = a log a

b +(1−a) log 1−a
a−b . In particular, if Pν [A] ≥ 1−δ

and Pν′ [A] ≤ δ for some δ ∈ (0, 1), then2

n∑
j=1

Eν [Nj(σ)]D(νj‖ν′j) ≥ log
1

2.4δ
. (11)

III. LOWER BOUND

In this section, we establish a performance benchmark for our practical algorithms by providing an algorithm-independent
lower bound on the average number of arm pulls when Pe ≤ δ.

We assume in this section that the MAB reward distributions (ν1, . . . , νn) satisfy the following assumption.

Assumption 1. Each distribution νj in the bandit instance (ν1, . . . , νn) comes from a parametric family P , and is uniquely
parametrized by its mean µj ∈ (0, 1). In addition, any two distributions νj , ν′j ∈ P are mutually absolutely continuous, and
D(νj‖ν′j)→ 0 as the means of νj and ν′j approach each other.

Assumption 1 is satisfied for Bernoulli rewards and Gaussian rewards with a fixed variance, among others [8], [15]. Our
analysis can also readily be extended to more general families of arm distributions satisfying [15, Assumption 3], which
essentially states that any given arm distribution can be replaced by a different distribution with a strictly higher (or strictly
smaller) mean but a similar KL divergence to a reference arm (see also [8]).

Our first main result is given as follows.

Theorem 1. (Lower bound) Under Assumption 1, suppose that a given algorithm Alg∗ achieves Pe ≤ δ for all identifiable
bandit instances with reward distributions in P . Fix an identifiable instance (ν1, . . . , νn) with means (µ1, . . . , µn), and for
each j = 1, . . . , n, let ν′j ∈ P be defined via its mean µ′j as follows for sufficiently small α > 0:3

• If the outer minimum in (3) is achieved by the first term (i.e., by a group in which j is best) then µ′j = µj − (1 + α)∆j;
• Otherwise, µ′j = µj + (1 + α)∆j .

2See [15, Remark 2] for this variation.
3Specifically, α > 0 is arbitrary subject to being sufficiently small so that µ′j ∈ (0, 1). This is possible due to the fact that µj ∈ (0, 1).
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When Alg∗ is run on the instance (ν1, . . . , νn), the average number of arm pulls is at least Tlower(δ), where

Tlower(δ) =

n∑
j=1

log 1
2.4δ

D(νj‖ν′j)
. (12)

Proof. Fix a given arm j, and let ν(j) be the instance where νj is replaced by ν′j , and all other arms remain the same as ν.
We observe from the definition of ν′j in the theorem statement that this change alters one group’s best arm. In the first case,
there is a group where j was best but it is pushed below the second-best, and in the second case, there is a group where j
was not best but it is pushed above the best. Note that the definition of ν′j via its mean µ′j is valid due to Assumption 1, and
the mutual absolute continuity condition therein ensures that D(νj‖ν′j) is finite.

In the following, we assume that ν(j) is also an identifiable instance, i.e., each group has a unique best arm. In the
supplementary material, we provide the required changes to circumvent this assumption; these changes make use of the final
part of Assumption 1.

Letting A in (10) be the event that the algorithm provides the correct output for ν (and hence, an incorrect output for ν(j)),
we claim that Lemma 3 yields

Eν [Nj ] ≥
log 1

2.4δ

D(νj‖ν′j)
. (13)

Indeed, this follows from the fact that Pe ≤ δ on all identifiable instances, and since by construction the KL divergence for
arms indexed by j′ 6= j is zero (i.e., the distributions are identical in the two instances).

Since (13) holds for any j, the average number of arm pulls is lower bounded by the sum of the right-hand side over all j,
thus proving (12).

Remark 1. The bound (12) takes the same form as our upper bounds (to be given in the subsequent sections) whenever
D(νj‖ν′j) ≤ c∆2

j for some constant c, in which case

Tlower(δ) ≥
n∑
j=1

log 1
2.4δ

c∆2
j

. (14)

For instance, under Gaussian rewards with variance σ2, a standard calculation gives D(νj‖ν′j) =
∆2

j (1+α)2

2σ2 . Moreover, under

Bernoulli rewards with means in the range (η, 1 − η), it is known that D(νj‖ν′j) ≤
∆2

j (1+α)2

η(1−η) [7, Eq. (2.8)]. See [8, Sec. 4]
for KL divergence calculations for other families of arm distributions.

IV. SUCCESSIVE ELIMINATION ALGORITHM

Successive elimination is a common MAB technique in which confidence bounds are used to rule out suboptimal arms, the
remaining arms are sampled once each, and this procedure is repeated until one arm remains. In this section, we adopt this
approach for the overlapping multi-bandit problem.

As is common in elimination algorithms, we work in epochs indexed by i = 1, 2, . . . , where within a given epoch we pull
several arms. To decide which arms to pull and which to eliminate, we make use of the following definitions:
• Potential maximizers within group G. This is the set of arms j ∈ G whose UCB is at least as high as the highest LCB:

M
(G)
i =

{
j ∈ G : UCBti(j) ≥ max

j′∈G
LCBti(j

′)

}
(15)

under the definitions (6)–(7), where ti is the total number of arm pulls after those that occur in the i-th epoch.
• Unresolved groups. This is the set of groups that still have at least two potential maximizers:

G̃i =
{
G ∈ G : |M (G)

i | ≥ 2
}
, (16)

with G̃0 = G.
• Arms of interest. This is the set of arms that are the potential maximizer for at least one unresolved group:

Ai =
{
j : ∃G ∈ G̃i with j ∈ G

}
. (17)

With these definitions in place, the successive elimination algorithm is described in Algorithm 1.

Theorem 2. (Upper bound for successive elimination) For any ε ∈ (0, 1) and δ ∈
(
0, 1

e log(1 + ε)
)
, with probability at least

1 − 2+ε
ε/2

(
δ

log(1+ε)

)1+ε
, the successive elimination algorithm terminates with the correct output after at most Telim(δ, ε) arm

pulls, where

Telim(δ, ε) =

n∑
j=1

2γ

∆2
j

log
2 log

(
γ(1 + ε)∆−2

j

)
δ/n

, (18)
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Algorithm 1 Successive Elimination Algorithm for the Overlapping Multi-Bandit Problem
Require: Groups G, constants δ, ε > 0

1: Initialize i = 1, t = 0, and Tj(t) = 0 (∀j)
2: Set M (G)

0 = G (∀G), G̃0 = G, and A0 = {1, . . . , n}
3: while Ai−1 6= ∅ do
4: Pull every arm in Ai−1 once, incrementing t after each pull and updating all Tj(t)
5: Compute M (G)

i , G̃i and Ai via (15)–(17)
6: For all G with |M (G)

i | = 1, set ĵ(G) to be the corresponding single arm.
7: Increment the epoch index i
8: end while
9: return (ĵ(G1), . . . , ĵ(Gm))

with γ = 8(1 +
√
ε)2(1 + ε).

Proof. It suffices to show that when the high-probability event in Corollary 1 holds, the algorithm terminates with the correct
estimates and performs at most Telim(δ, ε) arm pulls.

We first show that the algorithm never removes an optimal arm j∗(G) from the arms of interest without first correctly
assigning ĵ(G) = j∗(G) (for all G in which it is optimal). We prove this by induction, with the trivial base case being that
j∗(G) is initially both of interest and in M (G)

0 by construction. Now, assuming j∗(G) ∈M (G)
i−1 after the (i− 1)-th epoch, we

have

UCBti(j
∗(G)) ≥ µj∗(G) (19)

= max
j′∈G

µj′ (20)

≥ max
j′∈G

LCBti(j
′), (21)

where both (19) and (21) use the validity of the confidence bounds (Corollary 1). Therefore, j∗(G) meets the condition (15),
and it remains in M (G)

i in Line 6 of Algorithm 1. By induction, this means that j∗(G) remains in M (G)
i as long as G remains

unresolved, so it is the only arm in G that can be declared optimal.
Next, we bound the number of pulls of each arm. By construction, after Line 4 of Algorithm 1 in a given epoch, all arms of

interest have been pulled the same number of times, and therefore have the same value of U(Tj(t), δ/n), henceforth referred
to as Ui in epoch i. By Lemma 2, this value is at most ∆

4 once the number of epochs reaches the right-hand side of (9). Now,
fix any arm j and note the following:
• If j is the top arm in group G, the group will be resolved once all other j′ 6= j from G are removed from M

(G)
i . For

any such j′, if Ui <
∆j

4 then by (6)–(7), |UCBti(j
′)− LCBti(j

′)| < ∆j

2 . Hence,

UCBti(j
′) < LCBti(j

′) +
∆j

2
(22)

≤ µj′ +
∆j

2
(23)

≤ µj −
∆j

2
(24)

≤ UCBti(j)−
∆j

2
(25)

< LCBti(j), (26)

where (22) and (26) use the above-mentioned gap between UCB and LCB, (23) and (25) use the validity of the confidence
bounds, and (24) uses the definition of ∆j and the fact that j = j∗(G).
We see from (26) that j′ is removed from M

(G)
i . Since this holds for all j′ 6= j in G, it follows that the group is marked

as resolved.
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Algorithm 2 LUCB Algorithm for the Overlapping Multi-Bandit Problem
Require: Groups G, constants δ, ε > 0

1: Sample each arm once; set Tj(n)← 1 (∀j); initialize t = n and i = 1
2: while True do
3: for G ∈ G do
4: h

(G)
i = arg maxj∈G µ̂j,Tj(t)

5: l
(G)
i = arg max

j∈G\{h(G)
i } UCBt(j)

6: w
(G)
i = UCBt(l

(G)
i )− LCBt(h

(G)
i )

7: end for
8: G′i ← arg maxG∈G w

(G)
i (breaking ties arbitrarily)

9: if w(G′i)
i ≤ 0 then

10: return (h
(G1)
i , . . . , h

(Gm)
i )

11: else
12: Sample h(G′i)

i and l(G
′
i)

i

13: Set t← t+ 2 and i← i+ 1; update all Tj(t)
14: end if
15: end while

• On the other hand, if j ∈ G is not the top arm in G, and if Ui <
∆j

4 , then

UCBti(j) < LCBti(j) +
∆j

2
(27)

≤ µj +
∆j

2
(28)

≤ µj∗(G) −
∆j

2
(29)

≤ UCBti(j
∗(G))− ∆j

2
(30)

< LCBti(j
∗(G)), (31)

by the same arguments as (22)–(26). We see that (31) implies that j is removed from M
(G)
i .

Combining these cases, we conclude that arm j only ever continues being pulled if Ui ≥ ∆j

4 . Since i is precisely the number
of arm pulls of all remaining arms after epoch i, applying Lemma 2 and summing (9) over j = 1, . . . , n yields (18).

We observe that (18) matches (14) up to the constant factors and the extra log factor log
2 log(γ(1+ε)∆−2

j )

n , which is typically
insignificant compared to the leading 1

∆2
j

term.

In particular, if δ = O(n−α) and minj ∆j = Ω(n−β) for some constants α, β > 0, then we find that the factors

log
2 log

(
γ(1+ε)∆−2

j

)
δ/n and log 1

2.4δ both simplify to O(log n). Hence, in this case, the upper and lower bounds match to within
a constant factor.

V. LUCB-TYPE ALGORITHM

In Algorithm 2, we describe a lower-upper confidence bound (LUCB) algorithm inspired by that proposed for top-k
identification [14], [16]. We initially pull every arm once, and then proceed in rounds within which two arms are pulled;
similarly to Algorithm 1, these rounds are indexed by i ≥ 1.

In round i, within each group G ∈ G, we consider the highest-mean arm h
(G)
i , and the arm l

(G)
i with the highest UCB score

in G \ {h(G)
i }. If UCBt(l

(G)
i ) − LCBt(h

(G)
i ) < 0 for all G ∈ G, then we believe each h

(G)
i to be optimal within its group,

so we terminate. Otherwise, to learn more about the competing arms h(G)
i and l

(G)
i , we pull them both for the group such

that their confidence regions overlap the most (i.e., UCBt(l
(G)
i )− LCBt(h

(G)
i ) is highest). As usual, here t denotes the total

number of arm pulls so far.

Theorem 3. (Upper bound for LUCB) For any ε ∈ (0, 1) and δ ∈
(
0, 1

e log(1+ε)
)
, with probability at least 1− 2+ε

ε/2

(
δ

log(1+ε)

)1+ε
,

the LUCB algorithm terminates with the correct output after at most Tlucb(δ, ε) arm pulls, where

Tlucb(δ, ε) = 2

n∑
j=1

2γ

∆2
j

log
2 log

(
γ(1 + ε)∆−2

j

)
δ/n

, (32)

with γ = 8(1 +
√
ε)2(1 + ε).
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Proof. We first show that when the high probability event in Corollary 1 holds, the algorithm can only terminate with the
correct output (j∗(G1), . . . , j∗(Gm)). Suppose for the purpose of contradiction that the algorithm terminates during round i and
returns (h

(G1)
i , . . . , h

(Gm)
i ) 6= (j∗(G1), . . . , j∗(Gm)). This implies that there is at least one group G for which h(G)

i 6= j∗(G).
Letting ti denote the time index in Line 6 of Algorithm 2 during round i, we have

µ
h
(G)
i
≥ LCBti(h

(G)
i ) (33)

≥ UCBti(l
(G)
i ) (34)

≥ UCBti(j
∗(G)) (35)

≥ µj∗(G), (36)

where (33) and (36) use the validity of the confidence bounds (Corollary 1), (34) uses the stopping condition, and (35) uses
the definition of l(G)

i . From (36), we have µ
h
(G)
i
≥ µj∗(G), which is in contradiction with j∗(G) being the unique best arm in

G. Hence, under the event in Corollary 1, the algorithm will never return the wrong output.
Next, we bound the number of pulls of each arm. Define c(G) :=

µj∗(G)+µjsec(G)

2 , where µjsec(G) is the second best arm in
group G. We say that an arm j ∈ G is G-BAD for the group G in round i if either of the following two conditions hold:

j = j∗(G) and LCBti(j) < c(G), or (37)
j 6= j∗(G) and UCBti(j) > c(G). (38)

Recall that G′i is the group from which h
(G′i)
i and l

(G′i)
i are selected in round i. For all i ≥ 1, conditioned on the event in

Corollary 1, we claim that

LCBti(hi(G
′
i))) < UCBti(li(G

′
i))) =⇒

{hi(G′i) is G′i-BAD} or {li(G′i) is G′i-BAD}. (39)

Simply put, (39) states that if the stopping condition is not satisfied then either hi(G′i) or li(G′i) is G′i-BAD. We prove (39)
in the supplementary material.

For an arm j, let τj denote the smallest integer such that U(τj , δ/n) ≤ ∆j

4 . We show that if j has been pulled some number
of times q ≥ τj in a given round, then j cannot be G-BAD for any group G containing j. We proceed by considering the
following two cases:
• Case j /∈ {j∗(G1), . . . , j∗(Gm)}:

In this case, we have
∆j = min

G : j∈G
µj∗(G) − µj . (40)

Supposing q ≥ τj , let G be any group such that j ∈ G. Then, we have

µ̂j,q + U(q, δ/n) ≤ µj + 2U(q, δ/n) (41)

=
µj∗(G) + µjsec(G)

2
+ 2U(q, δ/n)

+
(µj − µj∗(G)) + (µj − µjsec(G))

2
(42)

≤ c(G) + 2U(q, δ/n) +
µj − µj∗(G)

2
(43)

≤ c(G) +
∆j

2
+
µj −minG:j∈G µj∗(G)

2
(44)

= c(G) +
∆j

2
− ∆j

2
= c(G), (45)

where (41) uses the validity of the confidence bounds, (43) follows from µj − µjsec(G) ≤ 0 and the definition of c(G),
(44) uses U(q, δ/n) ≤ ∆j

4 , and (45) uses (40). This result implies that j cannot be G-BAD for any group G containing j.
• Case j ∈ {j∗(G1), . . . , j∗(Gm)}:

We consider the following two sub-cases:
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– For G ∈ {G : j ∈ G and j = j∗(G)}, we have

µ̂j,q − U(q, δ/n) ≥ µj − 2U(q, δ/n) (46)

=
µj∗(G) + µjsec(G)

2
− 2U(q, δ/n)

+
µj∗(G) − µjsec(G)

2
(47)

≥ c(G)− ∆j

2
+
µj∗(G) − µjsec(G)

2
(48)

≥ c(G)− ∆j

2
+

∆j

2
= c(G) , (49)

where (47) follows from j = j∗(G), (48) from U(q, δ/n) ≤ ∆j

4 , and (49) from the fact that µj∗(G) − µjsec(G) ≥ ∆j

when j = j∗(G). This implies that j cannot be G-BAD for any group G ∈ {G : j ∈ G and j = j∗(G)}.

– For G ∈ {G : j ∈ G and j 6= j∗(G)}, we have

µ̂j,q + U(q, δ/n) ≤ µj + 2U(q, δ/n) (50)

=
µj∗(G) + µjsec(G)

2
+ 2U(q, δ/n)

−
(µj∗(G) − µj) + (µjsec(G) − µj)

2
(51)

≤ c(G) +
∆j

2
−
µj∗(G) − µj

2
(52)

≤ c(G) +
∆j

2
− ∆j

2
= c(G) , (53)

where (52) follows from U(q, δ/n) ≤ ∆j

4 and µjsec(G)−µj ≥ 0, and (53) from the fact that µj∗(G)−µj ≥ ∆j when
j 6= j∗(G). This implies that j cannot be G-BAD for any group G ∈ {G : j ∈ G and j 6= j∗(G)}.

In summary, the results in these sub-cases imply that j ∈ {j∗(G1), . . . , j∗(Gm)} cannot be G-BAD for any group G
containing j if j has been sampled τj or more times and j ∈ {j∗(G1), . . . , j∗(Gm)}.

Combining the above, we deduce that conditioned on the high probability event from Corollary 1, the total number of rounds
does not exceed the following:

∞∑
i=1

1{h(G′i)
i is G′i-BAD or l(G

′
i)

i is G′i-BAD} (54)

=

∞∑
i=1

n∑
j=1

1{{h(G′i)
i = j or l(G

′
i)

i = j} ∩ {j is G′i-BAD}} (55)

≤
∞∑
i=1

n∑
j=1

1{{h(G′i)
i = j or l(G

′
i)

i = j} ∩ {Tj(ti) < τj}} (56)

≤
n∑
j=1

(τj − 1), (57)

where (57) follows since Tj(t1) = 1 by construction, and since Tj(ti+1) = Tj(ti) + 1 whenever h(G′i)
i = j or l(G

′
i)

i = j. The
proof of Theorem 3 is completed by noting that the total number of arm pulls is n+ (2× number of rounds), and substituting
the upper bound in (9) (with ∆ = ∆j) for τj .

Observe that the bounds in Theorems 2 and 3 coincide up to a factor of two, and hence, the guarantee of LUCB is also
guaranteed to match the lower bound up to a logarithmic or constant factor.

VI. APPLICATION TO TOP-K RANKING

In the top-k ranking problem (e.g., see [19], [20]), we seek to identify the best k arms and their order with respect to the
means {µj}nj=1. This is in contrast with the more commonly considered top-k identification problem, where we do not care
about the order [11], [14].

The following reduction shows that top-k ranking is a special case of our setting: Let the m =
(
n
k−1

)
groups be all the

subsets of {1, ..., n} of size n − k + 1. This group size ensures that every group has at least one top-k arm, and yields the
following:
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1) An arm is in the set of top k arms if and only if it is the best arm in at least one group. Therefore, if we know the best
arm in each group, then we also know which arms are the top k.

2) Given knowledge of the best arm in each group, the ordering within the top k is uniquely identified by observing, for
each (i, j) in the top k, which arm is best in the group {i}∪{j}∪Aij , where Aij is an arbitrary subset of size n−k−1
among the bottom n− k arms (which are known due to the previous item).

Conversely, if the top-k ranking solution is known, we can trivially establish the best arm in each such group. We conclude
that the top-k ranking problem and the overlapping multi-bandit problem are equivalent under the choice of groups described
above.

With this reduction in place, we have the following corollary, where we let µ[1], . . . µ[n] denote a re-ordering of the arm
means such that

µ[1] > . . . > µ[k] > µ[k+1] ≥ . . . ≥ µ[n]. (58)

Here the strict inequalities ensure that the top-k ranking solution is uniquely defined.

Corollary 2. (Application to top-k ranking) In the top-k ranking problem, the statements of Theorem 1, Theorem 2, and
Theorem 3 hold true with the definition of ∆j specialized as follows:

∆j =


µ[1] − µ[2] j is best
min{µ[i] − µ[i+1], µ[i−1] − µ[i]} j is i-th best
µ[k] − µj otherwise,

(59)

where the middle case holds for 2 ≤ i ≤ k.

The equivalence of (3) and (59) is easily established via the above-mentioned group structure and reduction.
In the case of Bernoulli rewards, similar results to Corollary 2 can be deduced from the study of active coarse ranking in

[21]. Moreover, the analysis therein can be extended to general sub-Gaussian rewards with relatively little difficulty. Thus, we
do not claim the bounds in Corollary 2 themselves to have any significant novelty, but rather, our goal here is to highlight the
strong connection between the two seemingly unrelated bandit settings.

At first glance, it may appear that implementing Algorithms 1 and 2 requires prohibitively large computation due to steps
that search over

(
n
k−1

)
groups. However, due to the structure of these groups, both algorithms can in fact be implemented

efficiently via sorting; for Algorithm 2, this again produces a similar algorithm to the LUCB-type algorithm proposed in [21].
The details are given in the supplementary material.

VII. CONCLUSION

Motivated by overlapping group structures in practical multi-armed bandit applications, we have introduced and studied a
novel overlapping multi-bandit best arm identification problem. Our algorithms based on successive elimination and LUCB-type
selection are near-optimal, matching the lower bound up to a logarithmic factor in the general case, and up to a constant factor
in broad scaling regimes on the error probability and gaps {∆j}nj=1. In addition, we showed that our results apply directly to
the problem of top-k ranking with regular bandit rewards, thus complementing the existing literature on top-k identification
and top-k ranking via pairwise comparisons.

APPENDIX

A. Non-identifiable Instances in the Lower Bound

It may be the case that ν(j) constructed in the proof of Theorem 1 is not an identifiable instances, as a result of µj being
pushed below multiple µj′ that were tied for second best in some group(s). In this case, we further modify ν(j) so that in any
groups with ties, one of the tied arms is shifted up by an arbitrarily small (i.e., essentially infinitesimal) amount to become
the unique maximizer.

This modification leads to additional terms on the left-hand side of (10), but since each corresponding KL divergence can
be made arbitrary small4 by reducing the amount by which the shift is done above (cf., final part of Assumption 1), all such
terms can be neglected. Therefore, (13) still holds, and Theorem 1 remains true.

4The notion of “arbitrarily small” here can even be as a function of n and ν, so that this argument remains valid even when we sum over all the arms and
incorporate the multiplications by Eν [Nj′ (σ)] in (10)
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B. Proof of G′i-BAD Property (39)

Recall that G′i is the group from which hi(G′i) and li(G′i) are selected in round i. For all i ≥ 1, conditioned on the event
in Corollary 1, we prove that

LCBti(hi(G
′
i)) < UCBti(li(G

′
i)) =⇒ {hi(G′i) is G′i-BAD} or {li(G′i) is G′i-BAD}.

Let τ denote the stopping round of the algorithm, i.e. the first round i such that LCBti(hi(G
′
i)) ≥ UCBti(li(G

′
i)). Then the

previous relation can be written as:

{i < τ} =⇒ {hi(G′i) is G′i-BAD} or {li(G′i) is G′i-BAD}.

We prove this by contradiction by considering the following cases in which we assume that both hi(G
′
i) and li(G

′
i) are not

G′i-BAD:
• Case 1: Using the stopping condition and the G′i-BAD property, we have

{i < τ} and {hi(G′i) = j∗(G′i) is not G′i-BAD} and {li(G′i) 6= j∗(G′i) is not G′i-BAD} (60)
=⇒ {LCBti(hi(G

′
i)) < UCBti(li(G

′
i))} and {LCBti(hi(G

′
i)) ≥ c(G′i)} and {UCBti(li(G

′
i)) ≤ c(G′i)} (61)

=⇒ {LCBti(hi(G
′
i)) < UCBti(li(G

′
i))} and {LCBti(hi(G

′
i)) ≥ UCBti(li(G

′
i))}. (62)

The obtained events are in contradiction.
• Case 2: Using the definition of the G′i-BAD property, we have

{i < τ} and {hi(G′i) 6= j∗(G′i) is not G′i-BAD} and {li(G′i) = j∗(G′i) is not G′i-BAD} (63)
=⇒ {UCBti(hi(G

′
i)) ≤ c(G′i)} and {LCBti(li(G

′
i)) ≥ c(G′i)} (64)

=⇒ {µ̂hi(G′i),Thi(G
′
i
)(ti)

< c(G′i)} and {µ̂li(G′i),Tli(G
′
i
)(ti)

> c(G′i)}, (65)

where we have used the fact that U(t, δ/n) is always strictly positive in (6)–(7). It follows that µ̂hi(G′i),Thi(G
′
i
)(ti)

<

µ̂li(G′i),Tli(G
′
i
)(ti)

which is in contradiction with µ̂hi(G′i),Thi(G
′
i
)(ti)

= arg maxj∈G′i µ̂j,Tj(ti).
• Case 3: Using the definition of the G′i-BAD property, we have

{i < τ} and {hi(G′i) 6= j∗(G′i) is not G′i-BAD} and {li(G′i) 6= j∗(G′i) is not G′i-BAD} (66)
=⇒ {UCBti(hi(G

′
i)) ≤ c(G′i)} and {UCBti(li(G

′
i)) ≤ c(G′i)} (67)

=⇒ {UCBti(j
∗(G′i)) ≤ c(G′i)}. (68)

Since j∗(G′i) is the unique best arm in G′i, we have µj∗(G′i) > c(G′i), which is in contradiction with the obtained event.

C. Efficient Implementations for Top-k Ranking

We showed in Section VI that we recover the top-k ranking problem upon letting the m =
(
n
k−1

)
groups be all the subsets

of {1, ..., n} of size n− k + 1. Naively using this fact in Algorithms 1 and 2 leads to inefficient algorithms that iterate over
all
(
n
k−1

)
such subsets. However, here we show that both algorithms permit equivalent versions that have low computational

complexity.
1) Successive Elimination: To describe the efficient implementation of successive elimination, we first present the following

definitions with respect to the upper and lower confidence bounds in (6)–(7):
• If the LCB of arm j is above the UCB of arm j′, then we say that j is certifiably better than j′, and that j′ is certifiably

worse than j.
• We call an arm certifiably i-th best if it is certifiably worse than i− 1 arms and certifiably better than n− i arms.
• We call an arm potentially top-k if it is not certifiably worse than k or more other arms.
• We call an arm of interest if both of the following hold: (i) It is potentially top-k, (ii) It is not certifiably i-th best for

any i = 1, . . . , k.
With these definitions, the algorithm proceeds as per Algorithm 1, pulling every arm of interest in a given epoch and then
updating those arms of interest. Such updates can be done efficiently by sorting the relevant UCB and LCB scores.

To see the equivalence to Algorithm 1, we need to show that the two notions of “arm of interest” are identical. To see this,
recall the definition of the potential maximizers M (G)

t in (15), and note the following for a given arm j:
• Suppose that conditions (i) and (ii) in the final dot point above hold. By the first condition, we know that there exists

a set A0 of n − k arms that j is potentially better than (i.e., not certifiably worse). Moreover, by the second condition,
there exists an arm j′ 6= j (not necessarily in A0) that is neither certifiably better nor certifiably worse than j. If we
consider a group G equaling a subset of A0 ∪ {j} ∪ {j′} containing both j and j′, then we immediately deduce that
{j, j′} ⊆ M

(G)
t . Hence, j is the potential maximizer in a group with at least two potential maximizers, and so it is still

of interest according to Algorithm 1.
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• Conversely, suppose that j is of interest according to Algorithm 1, i.e., {j, j′} ⊆ M
(G)
t for some G and j′ 6= j. Since

each group size is n− k + 1, both j and j′ must be potentially top-k, and neither of the two can be certifiably i-th best
for 1 ≤ i ≤ k. Therefore, both (i) and (ii) above hold.

2) LUCB: Recall that in each round of Algorithm 2, we select two arms hi := h
G′i
i and li := l

G′i
i , terminate if the former’s

LCB exceeds the latter’s UCB, and otherwise pull both arms and continue. In the special case of top-k ranking, we claim that
these steps can be reformulated as follows:
• In round i, find the arms hi and li that maximize UCBt(li)− LCB(hi) subject to the following constraints:

1) hi has one of the k highest empirical means (i.e., values of µ̂j,Tj(t)) among all arms;
2) The empirical mean of hi is at least as high as that of li.

• If UCBt(li) ≤ LCB(hi) then terminate; otherwise pull both hi and li and proceed to the next round.
Once again, this procedure can be efficiently implemented by sorting the relevant empirical means, UCB scores, and LCB
scores, without the need to search over a combinatorially large number of groups.

To see the equivalence of the above steps to those in Algorithm 2, we note the following:
• Consider any pair (h

(G)
i , l

(G)
i ) constructed in lines 4 and 5 of Algorithm 2. The fact that the empirical mean of hi is at

least as high as that of li is trivial, and since the group size is n − k + 1, we also see that hi has one of the k highest
empirical means. Therefore, this pair is feasible in the maximization problem described above.

• Conversely, suppose that hi and li are optimal (and therefore feasible) in the maximization problem described above.
Consider a group G containing ht, lt, and an arbitrary set of n− k − 1 other arms whose empirical mean is below that
of ht. By the optimality assumption, li must equal arg max

j∈G\{h(G)
i } UCBt(j). and we deduce that this pair is indeed

considered in lines 4 and 5 of Algorithm 2.
Since both variants of of the algorithm seek to maximize UCBt(li) − LCB(hi) and terminate when this difference is non-
positive, we deduce that the two are equivalent.
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